
A Scoping Review on Bioactive Peptides from Meat and Some Daily Food and Their Role in Human Health and Nutrition

Dauda Sa-Adu Abiola¹, Xiang-Rong Cheng^{1*}, Yan Yang¹, Xue-Mei Ge², Li-Yan Qian³, Dong-Liang Wang^{3*}

¹School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China ²Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China.

³National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Done-ECountry252201, Shandong, PR China

ABSTRACT: The objective of the proposed review was focused in studying bioactive peptides from daily foods and their role on human health and nutrition. Itoffers major potential for incorporation into functional foods and nutraceuticals. It can be derived from plant and animal origin. Methods of producing peptides are occurred in the proteolytic digestion of parent proteins, plant and bacterial proteases. It has physiological effect on the main body systems. There are some challenges in bioactive peptides such as fermented products compared to the raw materials could change in amino acid composition, size and sequence of the peptides. It is obvious that these peptides can be used for health promotion and disease risk reduction, especially because they have some advantages compared to synthetic drugs.

Key words: functional food, animal origin, bioactive peptides, bioactivities, productionhuman health and nutrition

Date of Submission: 15-08-2019

Date of Acceptance: 29-08-2019

I. INTRODUCTION

Peptides areconsidered as proteins formed in the cell within large prepropeptides forms, which can lead to active products. Bioactive peptidesact as a main role inphysiological functions and pathogenesis. They have been defined as food derived componentsthat can lead toseveral effects in the body. Bioactive peptides can be absorbed through small intestine where theyenter through the circulatory system to do various physiological effects, or they make some other effects in the digestive tract (Lafarga et al., 2016).

Protein hydrolysates and peptides from natural resources can be used as functional foodsor as technological components. The functional products may include the whole hydrolysatewith purified peptides (Lafarga et al., 2016). Peptides with different effects might be derived from a monohydrolysate. So, sometimes additional stages are required in order to incorporate peptideswith intended effects in the final product. This isolation process is carried out by controlling the process of enzymolysis (Zou et al., 2016).

The objective of the proposed review was focused in studying bioactive peptides from daily foods and their role on human health and nutrition with providing a comprehensive overview of the activities that have been reported for protein hydrolysates from various protein sources.

Sources Of Peptides And Production

History of Bioactive Peptide Discovery

Bioactive peptide discoveries have increased considerably since 1959, focusing on the identification of bioactive peptides from milk proteins. Historically, the first derived bioactive peptide wasconsidered in 1950 when Mellanderpublished that casein phosphorylated peptides has enhanced vitamin D-independent bone calcification in rachitic infants(Lafarga et al., 2016;Zou et al., 2016; Micewicz et al., 2015).

Bioactive Peptidesin food processing

Meat is considered a high-quality protein which it can represent the mostwidely investigated source for separating in a closing system of bioactive peptides. Table 1 shows different mechanisms for bioactive peptide

*Corresponding Author(X-R Cheng). Tel.: +86-510-85917780;

E-mail address: cheng-xiangrong@hotmail.com

generation. Calpains and cathepsinsendogenous enzymesarethe key process that affects the de-structuration of proteins and release of a large number of peptides and free aminoacids.

In a recent study, Bauchartet al. (2017) havefound an increase of bioactive peptides inmeat after two weeks of storing than in fresh meat. Fu et al (2017) has indicated that storing meat can generate bioactive peptides in muscles after 20 days of extensive proteolysis which can be driven by oxidation processes. Zhang et al, (2013) have mentioned that oxidation process can regulate the endogenous enzymatic activity. Korhonen et al (1998) and Leygonie et al (2012) have indicated that changing of temperature and pH can affect the content of bioactive peptides during meat storage. Pihlanto et al (2015) has mentioned that during gastrointestinal proteolysis, ingested meat-derivative proteins are attacked by digestive enzymes secreted in the smallintestine. It should be stimulated generate peptides similar to one released in a physiological digestion process. Vercruysse et al, (2005) have indicated that enzymatic hydrolysis is a famous method selected to produce bioactive peptides products.

	Table 1. Schematic representation of processes for obtaining meat bioactive peptides.								
Product	Process	Carrier/Regulation	Functionality	Peptide Sequence	Reference				
Meat	Proteolysis, oxidation	Endogenous enzymes	ACE-I activity	APPPPAEVPEVHEEVH, PPPAEVPEVHEEVH, IPITAAKASRNIA, LPLGG, FAGGRGG, APPPPAEVP	Bauchart et al 2017				
Collagen	Enzymatic hydrolysis	Bacterial collagenase, exogenous enzymes, protease from Aspergillus oryzae	ACE-I and antioxidant activity	AKGANGAPGIAGAPGFPGAR GPSGPQGPSGPP, PAGNPGADGQPGAKGANGAP , GAXGLXGP, GPRGF, VGPV, QGAR, LQGM, LQGMH, LC	Arihara et al 2006				
Cured products	Proteolysis	Endogenous enzymes	Antioxidant activity	DSGVT, IEAEGE, EELDNALN, VPSIDDQEELM,DAQEKLE, ALTA, SLTA, VT,SAGNPN	Fu 2017				
Fermente dproduct s	Proteolysis	Presence of starter cultures	Antioxidant activity	FGG, DM	Escudero et al 2013				

Xu et al. (2015) havereported that theamounts of essential amino acids hasincreased rapidlyinfermentation of soybean. Kleekayai et al. (2015) has identified twopeptides (SV and IF) and one antioxidant peptide (WP) from fermented shrimp. Pan et al. (2005)hasobtained two antihypertensive peptides with amino acidsequences of VPP and IPP from skimmed milk hydrolysatedigested by cell-free extract of Lactobacillus helveticus.

Production of Bioactive Peptides

Many published works have described the isolation of bioactive peptides following bacterial fermentation of milk and meatproteins. However, microbial fermentation of meat proteins has been less successful. Methods arebased on enzymatic hydrolysis which can lead to an advantage because they are more predictable to the end products. Enzymes can be taken from plants, microorganisms or animals, and can be used alone or mixed with other enzymes. It is important that isolation of peptides by enzymatic hydrolysis is performed under certainconditions of such as temperature, pH, time taken, etc.

The production of bioactive peptides by enzymatic hydrolysis is shown in Fig1. The fractionation; purification and identification of bioactive peptides are taking part in the procedure.

Figure 1.Flow diagram for the production of bioactive peptides.

Bioactivity Of Peptides

Bioactive Peptides on Immune System

An overview of reported effects on immune system is given in Table 2, which also shows the suggested peptides responsible for the effects.

Effects	Origin	Amino acid sequence (in single-letter code)	Reference
Antifungalpeptid s	otide Crab	RRWCFRVCYRGFCYRKCR, RRWCFRVCYKGFCYRKCR, RWCFRVCYRGICYRKCR, KWCFRVCYRGICYRRCR, YLAFRCGRYSPCLDDGPNVNLYSCCSFY, DYDWSLRGPPKCATYGQKCRTW SPPNCCWNLRCKAFRCRPR	Miyata et al., 1989; Murakami et al., 1991; Ohta et al., 1992; Kawabata et al., 1996; Osaki et al., 1999
	Blood	of	
	immune-challenge and untreat mussels (Mutilusedulis)	ed DCCRKPFRKHCWDCTAGTPYYGYSTRNIFGCTC ted	Charlet et al., 1996
	(Wynuseduns) Rass	FFHHIFRGIVHVGKTIHKI VTG	Lauth et al 2002
	Salmon		Kamal and Motohiro 1986
	Sea hare	_	Woyke et al., 2001; Pettit et al., 1998
	Shrimp	YRGGYTGPIPRPPPIGRPPFRPVCNACYRLSVSD ARNCCIKFGSCCHLVKG, QVYKGGYTRPIPRPPPFV RPLPGGPIGPYNGCPVSCRGISFSQARSCCSRLGRCCHVGKGYSG, LVVAVTDGDADSAVPNLHENTEYNH YGSHGVYPDK, FEDLPNFGH IQVKVFNHGEHIHH, PEVYKGGYTRPIPRPPFVRPLPGGPIGPYNG CPVSCRGISFSQARSCCSRLGRCCHVGKGYS, VYKGGYTRPVPRPPF VRPLPGGPIGPYNGCP VSCRGISFSQARSCCSRLGRCCHVGKGYS, VYKGGYTRPIPRPFVRPVPG GPIGPYNGCPVS CRGISFSQARSCCSRLGRCCHVGKGYS	Destoumieux et al., 1991, 2000; Destoumieux-Garzon et al., 2001
	Oyster(Muscle) Mushroom	CLEDFYIG CLEDFYIG AGTEIVTCYNAGTKVPRGPSAXGGAIDFFN ATRVVYCNRRSGSV	Liu et al., 2008 Wang and Ng. 2004: Lam and
		VGGDDTVYYEG, AGTEIVTCYNAGTKVPRGPSAXGGAIDFFN	Ng. 2001
	Bean	KTCENLADTFRGPCFATSNC, KTCENLADTYKGPCFTTGSCDDHCK, KTCENLADTYKGPCFTTG, TENLADTYWGPPFTRGS, KTCENLADTY, KTCGNLANQYYPCFTTSNCDDHCKNKEHLRSGRCRDDFRCWCTK, KTYENLADTYKGPYFTTGSHDDHYKNKEHLRSGRMRDDFF, KTYENLADTYKGPYFTTGSHDDHYKNKEHLRSGRYRDDFF	Wong et al., 2012; Chan et al., 2012; Chan and Ng, 2013; Lam and Ng, 2013; Leung et al., 2008; Lin et al., 2010; Wang and Ng, 2007; Wu

Table 2. Effects of bioactive 1	peptides on	immune system.
---------------------------------	-------------	----------------

Bioad	ctive	ре	ptides	from	meat	and	some	daily	food	and	their	role	on	human	health	and	nutritie	2n
-------	-------	----	--------	------	------	-----	------	-------	------	-----	-------	------	----	-------	--------	-----	----------	----

			et al., 2011
	Venom of	the	
	social wasp	ILGTILGLLKSL	Wang et al., 2016
	(Polybiapaulist	a)	
Antimicrobialpep	tOyster(Muscle)	CLEDFYIG	Liu et al., 2008
ides			
	Bass	FFHHIFRGIVHVGKTIHKLVTG	Lauth et al., 2002
	Crab	RRWCFRVCYRGFCYRKCR,RRWCFRVCYKGFCYRKCR,RWCFRVCYRGI	Miyata et al., 1989; Murakami
		CYRKCR, KWCFRVCYRGICYRRCR,	et al., 1991; Osaki et al.,
		YLAFRCGRYSPCLDDGPNVNLYSCCSFY,	1999; Kawabata et al., 1996
		DYDWSLRGPPKCATYGQKCRTWSPPNCCWNLRCKAFRCRPR	
	Crayfish	FKVQNQHGQVVKIFHH	Lee et al., 2002
	Flounder	GWGSFFKKAAHVGKHVGKAALTHYL	Cole et al., 1997
	Loach	RQRVEELSKFSKKGAAARRRK	Park et al., 1997
	Lobster	IVENTSLEPHAGRCLLHTMCVKGDFTPPSPIR, QYGNLLSLLNGYR	Pisuttharachai et al., 2009;
		MMKLVLLCVLGLAV,MLKLVLLCVLGLALG, MLKLVLLCVLGLALG,	Battison et al., 2008
		MLRLVLLCVLGLAVG	
	Salmon	—	Uyttendaele and Debevere,
			1994
	Atlantic sal	mon	
	rest raw	_	Opheim et al., 2015
	material		
	Shrimp	MRLVVCLVFLASFALVCQG, YRGGYTGPIPRPPPIGRPPFRPVCNA	Cuthbertson et al., 2002;

 Table 2. Effects of bioactive peptides on immune system (continued).

Effects	Origin	Amino acid sequence (in single-letter code)	Reference Padhi and Verghese, 2008; Balseiro et al., 2011; Mitta et al., 2000; Charlet et al., 1996		
Antimicrobialpeptic s	le Marine mussels	HPHVCTSYYCSKFCGTAGCTRYGCRNLHRGKLCFCLHCSR, HSHACTSYWCGKFCGTASCTHYLCRVLHPGKMCACVHCSR, QSVACRSYYCSKFCGSAGCSLYGCYLLHPGKICYCLHCSR, SCASRCKGHCRARRCGYYVSVLYRGRCYCKCLRC, GFGCPNNYACHQHCKSIRGYCGGYCASWFRLRCTCYRCG, GFGCPNDYPCHRHCKSIPGRYGGYCGGXHRLRCTC, GFGCPNDYCHRHCKSIPGRXGGYCGGXHRLRCTCYR, GCASRCKAKCAGRRCKGWASASFRGRCYCKCFRC			
	Anchovy cookin wastewater Penaeid shrimp Zebrafishphosvitin Tegillarcagranosa	g GLSRLFTALK FEDLPNFGHIQVKVFNHGEHIHH n—	Tang et al., 2015 Petit et al., 2016 Ding et al., 2012		
	hemoglobin	PSVQDAAAQISADVKK, VLASLNFGDR, ISAAEFGK, ISAEAFGAINEPMK, GHAITLTYALNNFVDSLDDPSR, MGSYYSDECAAAWAALVAVVQAAL, LNGHGLTLWYGIONFVDOLDNADDLEDVARK	Bao et al., 2016		
	Beef muscle Bovine hemoglobin	GFHI, DFHING, FHG, GLSDGEWQ VNFKLLSHSLLVTLASHL, TKAVEHLDDLPGALSELSDLHAHKLRVDPVNFKLLSHSLL, LDDLPGALSELSDLHAHKLRVDPVNFKLLSHSL.KLSHSLLLSHSL	Jang et al., 2008 Hu et al., 2011; Adje et al., 2011		
	Deer, sheep, pig and cattle	<u></u>	Bah et al., 2016		
	Frogs	IKIPAVVKDTLKKVAKGVLSAVAGALTQ, IKLSPETKDNLKKVLKGAIKGAIAVAKMV, LKIPGFVKDTLKKVAKGIFSAVAGAMTPS, IKIPAFVKDTLKKVAKGVISAVAGALTQ, IKIPPIVKDTLKKVAKGVLSTIAGALST, IKLSPETKDNLKKVLKGAIKGAIAVAKMV, GLVGTLLGHIGKAILG, GLVGTL I GHIGKAII S	Mechkarska et al., 2012; Mechkarska et al., 2013; Mechkarska et al., 2014; Conlon et al., 2014		
	Bovine mammar epithelial cell line	y	Malvisi et al., 2015)		
	Venom of th social wasp Polybiapaulista	e ILGTILGLLKSL,IDWKKLLDAAKQIL	Souza et al., 2005		
	Milk	LRLKKYKVPQL, VYQHQKAMKPWIQPKTKVIPYVRYL, IKHQGLPQE, VLNENLLR, SDIPNPIGSENSEK	Mohanty et al., 2015; McCann et al., 2006; Hayes et al., 2006		
	Human milk	EQLTK, GYGGVSLPEWVCTTFALCSEK, CKDDQNPHISCDKF, GRRRRSVQWCAVSQPEATKCFQWQR NMRKVRGPPVSCIKRDSPIOCIOA	Pellegrini et al., 1999; Hunter et al., 2005		
	Egg	IVSDGDGMNAW, HGLDNYR	Mine et al., 2004; Mine		

			and
			Kovacs-Nolan, 2006
	Bovine milk	YQEPVLGPVRGPFPI,YQEPVLGPVRGPFPIIV,EVFGKEKVN, SDIPNPIGSENSEK,RPKHPIKHQGLPQEVLNENLLRF,VLNENLLR	Dallas et al., 2016
Antiviral peptides	Oyster(Muscle)	LLEYSI,LLEYSL	Lee et al., 1998
* *	•		Murakami et al., 1991;
	Crab	KWCFRVCYRGICYRRCR, RRWCYRKCYKGYCYRKCR	Masuda
			et al., 1992
			Plaza et al., 2007; Plaza et
	Sponge	_	al.,
			2009; Andjelic et al., 2008
	Mushroom	AGTEIVTCYNAGTKVPRGPSAXGGAIDFFN	Lam and Ng, 2001
	Bean	KTCGNLANQYYPCFTTSNCDDHCKNKEHLRSGRCRDDFRCWCTK	Lin et al., 2010
	Frog skin	ALWMTLLKKVLKAAAKAALNAVLVGANA	Bergaoui et al., 2013
Immunomodulatory	Atlantic salmon	1	
peptides	(Salmosalar)	—	Opheim et al., 2015
	Muscadomestica		
	larvae	—	Sun et al., 2014
	Chlorella		
	vulgarian	_	Morris et al., 2009
	Zebrafishphosvitir	1—	Ding et al., 2012

 Table 2. Effects of bioactive peptides on immune system (continued).

Effects	Origin	Amino acid sequence (in single-letter code)	Reference				
Immunomodulatory peptides	Soybean	MITLAIPVNKPGR, MITLAIPVN, MITL, HCQRPR, QRPR, MITLAIPVNKPGR	Yoshikawa et al., 2000; Singh et al., 2014; Capriotti et al., 2015				
	Rice Mushroom	GYPMYPLPR —	Takahashi et al., 1994 Sheu et al., 2004; Lin et al., 2013				
	Wheat Buckwheat	_	Horiguchi et al., 2005				
	pollen Turmeric (Curcuma	RKYVD	Liu et al., 1998				
	longa)	_	Aravind and Krishnan, 2016				
	Chickpea	—	Clemente et al., 1999				
	Frog skin	GLVGTLLGHIGKAILG, GLVGTLLGHIGKAILS, IKLSPE TKDNLKKVLKGAIKGAIAVAKMV	Mechkarska et al., 2014; Conlon et al., 2014; Mechkarska et al., 2013				
	Bovine						
	mammary epithelial cell line	_	Malvisi et al., 2015				
	Egg	_	Xie et al., 2002; Fan et al., 2003				
	Milk	TTMPLW, YPFPAVPYPQRTTMPLW, YQEPVLGPVR, LLY	Meisel, 2005; Mohanty et al., 2015; Elfahri et al., 2014; Hernandez-Ledesma et al., 2004: Berthou et al., 1987				
	Camel milk	QEPVPDPVRGLHP	El Hatmi et al., 2016				
	Bovine milk	PGPIPN, YQEPVLGPVRGPFPIIV, PGPIPN, LYQEPVLGPVRGPFPIIV	Boutrou et al., 2013; Dallas				
	et al., 2010 Bursa of Fabricius (BF) in chicken YEYAY, RMYFE, GPPAT, AGCCNG						
	RRL		Feng et al., 2012				
	Human milk	VEPIPY	Parker et al., 1984				
~	Egg	SVNVHSSL, YRGGLEPIN	Goldberg et al., 2003				
Cytomodulatorypept: des	i Bovine milk	KAVPYPQ,PYPQ, RTLGYLE,RTLGYL, YPFPGPI YVPFPYPFPG, AVP YPQR,RETIESLSSSEESIPEYK, QPTIPFFDPQIPK	Kampa et al., 1997; Nagaune et al., 1989; Hernandez- Ledesma et al., 2004				
	Camel milk	KRKEMPLLOSPV	El Hatmi et al., 2004				
	Casein	EPVLGPVRGP	Zhao et al., 2014				
Antiproliferative, anti	- Bean						
tumor peptides	(Phaseolus						
	vulgaris L.)	KTYENLADTYKGPYF TTGSHDDHYKNKEHLRSGRMRDDFF, KTCGNLANQYYTPCFTTSNCDDHCKNKEHLRSGRCRDDFRCWCT K, KTYENLADTYKGPYFTTGSHDDHYKNKEHLRSGRYRDDFF	Wang and Ng, 2007; Lin et al., 2010; Wu et al., 2011				
	Mushroom Flammulinavelu	1					
	tipes		Lin et al., 2013				

	Soybean Turmeric	XMLPSYSPY, SKWQHQQDSCRKQKQGV NLTPCEKHIMEKIQGRGDDDDDDDD	Kim et al., 2000; Valjakka et al., 1997
	(Curcuma longa) Bean Frog skin	 KTCGNLANQYYPCFTTSNCDDHCKNKEHLRSGRCRDDFRCWCTK IKLSPETKDNLKKVLKGAIKGAIVAKMV, GLWSKIKEAAKAAGKAALNAVTGLVNQGDQPS, GLVG TLLGHIGKAILG,GLVGTLLGHIGKAILS	Aravind and Krishnan, 2016 Lin et al., 2010 Attoub et al., 2013; Conlon et al., 2007; Mechkarska et al., 2014; Conlon et al., 2014
	Sea hare	e	
	(Dolabellaauric		
	ularia)	XVXXX	Madden et al., 2000; Pettit et al., 1998; Turner et al., 1998; Vaishampayan et al., 2000
	Muscadomest	i	
	ca larvae	—	Sun et al., 2014
	Fish sauce	—	Lee et al., 2003, 2004
	Sea hare	e	
	(Dolabellaauric		
	ularia)	XVXXX	Madden et al., 2000
	Cod, plaice	·,	
	salmon	_	Xhindoli et al., 2016; Ngo et al., 2012
	Tuna muscle Fish backbone	LPHVLTPEAGAT, PTAEGGVYMVT e—	Hsu et al., 2011 Zhang et al., 2013; Ngo et al., 2012
	Sardine		
	muscle	VY	Matsui et al., 2005
	Shrimp shell	_	Kannan et al., 2011
	Sea slug	g	
	(Pleurobranch	1	
	us	—	Wesson and Hamann, 1996
	forskalii)		
	Bovine Milk	VENLHLPLPLL, NLHLPLPLL, ENLHLPLPLL, ALNENLLRFFVAPFP EVFG, LNENLLRFFVAPFPEVFG, NENLLRFFVAPFPEVFG,	Juillerat-Jeanneret et al., 2011
Antimutagenic andantigenotoxic	Kefir	ENLLRFFVAPFPEVFG, FVAPFPEVFG —	Guzel-Seydim et al., 2011
peptides	Bovine		
	plasma,		
	globulin and	_	Park and Hyun, 2002
	albumin		• · · · ·
	Silk fibroin	_	Park et al., 2002

Bioactive Peptides onNervous System

An overview of reported effects of peptides on nervous system is listed in Table 3.Brantl et al.(1985)have reviewed the pharmacological management of various types of pain in the most recent years. There is also a great concern related to the side effects of opioids such as morphine, codeine, addiction, hyperalgesia, abuse, and toxicity (Nair et al., 2015; Brantl et al., 1985).

Cakir-Kiefer et al (2011) have discussed in vitro digestibility of α -casozepine, a benzodiazepine-like peptide from bovine casein, and biological activity of its main proteolytic fragment.

Zou et al. (2015) have indicated that bioactive peptides obtained from porcine cerebral hydrolysate have the ability to protect from any effects by reducing the Pb_2C concentration of the blood and brain. Su et al. (2016) have revealed that Coiliamystus protein hydrolysate has the rapeutic potential for memory deficit through inhibition of acetyl-choline sterase (AChE).

Effects	Origin	Amino acid sequence (in single-letter code)	Reference
Opioid and antinociceptive peptides	Wheat	GYYPT, YPISL	Takahashi et al., 2000; Fukudome and Yoshikawa, 1993
	Lactabumin	YGLF.YLLF	Yoshikawa et al., 1986
	Bovinemilk	YPFPGP. YPFPGPI	Boutrou et al., 2013
	Bovine/3-casein	YPFPGPI	Brantlet al., 1979
	Bovine milk-derived lactoferrin	_	Havashida et al., 2003
	Kefir microorganisms on bovine milk	YPFPGPI, YPVEPF, YPSYGLN, YPFPGPIPN, YPFPGPIPNSLPO	Dallas et al., 2016
	Camel milk	YFPIOFVOSR. YPS YGIN	El Hatmi et al., 2016
	Human milk	YVPFP, YPFV, YPFVE, YGLF	Kampa et al., 1996; Kostvra et al., 2004: Brantl, 1985
	Bovine milk-derived lactoferrin	_	Havashida et al., 2003
	Milk-derived	_	Tsuchiva et al., 2006
	Human lactoferrin	_	Rain et al., 2005
Relaxing peptides pentides	Bovine Casein	YLGYLEQLLR, YLGYLEQ	Cakir-Kiefer et al., 2011; Messaoudi et al., 2005
	Bovine as1-casein	YLGYLEQLLR	Miclo et al., 2001; Hernandez- Ledesma et al., 2014
	Bovine milk lactoferrin	—	Takeuchi et al., 2003; Kamemori et al., 2004

 Table 3. Effects of bioactive peptides on nervous system.

 Bioactive Peptides on Gastrointestinal System

Bioactive Peptides onGastrointestinal System

Table 3 presents an overview of reported effects of peptides on gastrointestinal system. Micewicz et al., 2015 has mentioned that obesity has turned into one of the most serious health problems in the current century and it is believed to elevate the probability of heart disease, type-2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis, among others.

Beucher et al. (1994) has showed that glycomacropeptide is released fromdietary casein during gastric digestion via stimulation of CCK release by intestinal cells. It also is supported by Pedersen et al. (2000), whoindicatedthat dietary amount of CMP can stimulate pancreatic secretion through CCK release. In vivostudy, There are many recent researches for bioactive peptides and proteins have been considered for their effects on probiotics (Oda et al., 2013, Nishi et al., 2003a, Yu et al. 2016).

Effects	Origin	Amino acid sequence (in single-letter code)	Reference
Anti-obesity	Soybean	LPYPR, VRIRLLQRFNKRS	Takenaka et al., 2000; Nishi et al., 2003
	Milk	MAIPBTSZPGACVMILYFHKR	Beucher et al., 1994; Pedersen et al., 2000
	Neuromedin U Blue whit	XXFRPN	Micewicz et al., 2015
	(Micromesistiuspoutassou) and brown shri (Penaeusaztecus)	imp	Cudennec et al., 2008
Prebiotic	Bovine whey protein	—	Ibrahim and Bezkorovainy, 1994
	Bovine lactoferrin	APRKNVRWCTISQPEWLECIRA	Oda et al., 2013
	Casein	_	Zhang et al., 2011; Prasanna et al., 2012
Protective effecton the mucosa	gutCasein and lactalbumin	—	Claustre et al., 2002 Martinez-Magueda et al., 2013a.
	Whey protein	YLLF	b
	Casein	AYFYPEL, YFYPEL	Martinez-Maqueda et al., 2013a, b

Table 3. Effects	of bioactive	peptides on	gastrointestinal	system.
Lable S.Lifeets	or bloactive	pepudes on	zasuonnesinai	system.

Mineral binding

Caseinophospopeptides simulate mineral binding properties and are useful in dental care. They also increase the absorption and bioavailability of calcium and some other minerals, such as manganese, zinc, copper and iron in the intestine. Most Caseinophospopeptides have a common design, such as a sequence of three phosphoseryl followed by two glutamic acid residues (Gobbetti et al. 2007).

These sequences provide the peptides with the unique capacity to keepCa, P and other mineral in a solution at intestinal Ph. Most phospopeptides containing the cluster sequence -Ser(P)-Ser(P)-Ser(P)-Glu(E)-Glu(E)-have been identified from whole bovine case (Sharma et al. 2011). The negatively charged side chains, represent the binding sites for minerals (Gobbetti et al. 2007).

Table 4. Commerciallyproducts of peptides.					
Product	Source	Claimed application	Type of fraction	Manufacturer	
Lactium	Milk	Relaxing	Peptide (YLGYLEQLL)	Ingredia, Arras Cedex, France	
Myprotein TM	Whey	Sport nutrition	Whole hydrolysate	The Hut, Ltd, UK	
Sato Marine Super P	Sardine	Antihypertensive	Peptide (VY)	Sato Pharmaceutical Co., Ltd., Tokyo, Japan	
Hyvital	Whey or casein	Infant nutrition	Whole hydrolysate	FrieslandCampina, Netherlands	
	Nonanimal proteinBiopharmaceutical cell culture				
Proyield	(soy, cotton	media	Whole hydrolysate	FrieslandCampina, Netherlands	
	seed, wheat, pea)				
	Protein from				
Stedygro	casein, soy, malt,	Microbial culture media	Whole hydrolysate	FrieslandCampina, Netherlands	
	gelatin, an	d			
	cotton				
	Protein fromSport nutrition and				
Lacprodan	casein and whey	beverage	Whole hydrolysate	Arla Foods Ingredients, Denmark	
Ameal S	Milk casein	ACE inhibition	Peptides (IPP and VPP)	Calpis, Japan	
Vasotensin	Bonito	Anti-hypertension	Peptide (LKPNM)	Metagenics, US	
	Porphyrayezoen	Porphyrayezoens			
Peptide Nori S	is	Anti-hypertension	Peptide (AKYSY)	Riken Vitamin, Japan	
Stabilium 200	Fish	Relaxing	Whole hydrolysate	Yalacta, France	
	Bovine and				
Seishou-sabou	porcine blood	Anti-obesity	Peptide (VVYP)	Moringa& Co., Ltd., Japan	
Marine peptide	Sardine	ACE inhibition	Peptides	SenmiEkisu, Japan	
BioZate	Whey	Anti-hypertension	Peptides	Davisco Foods, US	
NOW	Whey	Sport nutrition	Whole hydrolysate	NOWfoods, US	
Nutripeptin TM	Cod	Hypotriglyceridemic	Whole hydrolysate	Nutrimarine Life Science AS, Norway	
VERISOL	Collagen	Anti-aging	Peptides	GELITA Inc., US	
Remake CholesterolBlock	Soy protein	Hypocholesterolemic	Peptide (CSPHP)	Kyowa Hakko, Japan	

 Table 4.Commerciallyproducts of peptides.

Food Protein-Derived Bioactive Peptides

The primary purpose of protein consumption is to provide essential amino acids, which are used by the body to synthesize various structural (muscles, bones, hair) and functional (enzymes, hormones) proteins required for homeostasis maintenance. However, the increasing popularity of functional foods and nutraceuticals has led scientists to seek protein-derived fragments (peptides) that could prevent or even treat chronic metabolic disorders. A bioactive peptide consists of a certain number of amino acids (2-20) that are usually encrypted (hence the term 'cryptides') within the linear protein chain (Figure. 2) and remain inactive until released by digestion.

Figure. 2 Food Protein-derived Bioactive Peptides.

A protein chain can contain several cryptides that may be similar (same length and amino acid sequence) or dissimilar (same or different length with different amino acid sequence). Thus, it follows that under appropriate gastrointestinal tract (GIT) digestion conditions, food proteins could yield bioactive peptides. High peptide solubility increases absorption potential during oral consumption and hence ensures a more effective

bioavailability. This method produces a 'peptide soup' called a protein hydrolysate that contains cryptides and non-cryptides with peptides of different sizes, amino acid composition or sequence and activity. The protein hydrolysate can be tested for desirable activity and if positive may be used directly to formulate functional foods and nutraceuticals. High levels of cryptides will enhance bioactive properties of the protein hydrolysate. Therefore, subsequent separation techniques (membrane ultrafiltration, column chromatography) can be used to enrich the product with highly active peptides (fractions B, C, D) through removal of the inactive or less active components (fraction A) as shown in Fig. 1. Peptide separation is based mainly on size, net charge and hydrophobicity to produce distinct and homogenous fractions with better bioactive properties than the original protein hydrolysate. However, in some cases, peptide separation actually produces fractions with reduced bioactive properties than the original protein hydrolysate. The strong bioactive properties of such protein hydrolysates has been attributed to synergistic effects whereby the peptide interactions produce stronger effects than the sum of individual peptides. Therefore, loss of synergy as a result of peptide separation causes reductions in bioactive effects of the peptide fractions; in such cases, use of the protein hydrolysate without further peptide separation is preferred

Challenges In Bioactive Peptides Application

Challenges in application of bioactive peptides and hydrolysates in industries have been discussed by many authors (Lafarga and Hayes2016, Harnedy and FitzGerald, 2012; Lafarga and Hayes, 2016;Korhonen2009).

Grienke et al. (2014) has pointed to the importance of collaboration to reach a condition to exploit favorable bioactive peptides foods.

Another application of bioactive peptides and hydrolysatesis related to the effects of peptides on humans. Although there have been several in vivo investigations proving the bioactivity of peptides and hydrolysates inanimal models, the results of these studies cannot be confidently generalized to humans.

Different methods have been proposed to reduce bitterness of the peptides. The degree of bitterness isevaluatedin mole concentration of quinine sulfate solution (Matsuoka et al., 1991; Habibi-Najafiand Lee, 1996).

Peptides that reduce cell proliferation may be important tools in the fight against cancer. Using various cancer cell lines (liver, breast and cervical), rapeseed peptides obtained through fermentation significantly reduced cell proliferation but without cell toxicity. Similarly, a peptide (Trp-Pro-Pro) isolated from an enzymatic hydrolysate of blood clam muscle showed toxicity and antiproliferative effects when incubated with various cancer cell lines. In the presence of Trp-Pro-Pro (5 and 15 mg/ml), apoptosis of human prostate cancer cells (PC-3) increased 2-fold, which suggests anticancer potentials for the peptide. Cowpea protein hydrolysates have demonstrated potential cholesterol-reducing abilities through in vitro inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the enzyme that catalyzes the rate determining step during hepatic cholesterol synthesis37. If absorbed from the GIT, the cowpea protein hydrolysate could interfere with and decrease in situ cholesterol synthesis, which would lead to lowering of blood cholesterol and associated health benefits. The cowpea protein hydrolysate also interfered with micellar solubilization of cholesterol during in vitro tests. Since cholesterol solubilization is an important prerequisite for absorption from the GIT into blood circulation, consumption of the micellar-disrupting cowpea protein hydrolysate may enhance fecal removal of cholesterol and promote low blood cholesterol levels. Protein hydrolysates have also been tested for immune-modulating activities, especially to promote cellular expression of anti-inflammatory hormones (cytokines). Using a lipopolysaccharide/interferon γ -stimulated RAW 264.7 NO(-) macrophages, PPH treatment was shown to inhibit NO production by up to 20% when compared to non-treated cells38. The PPH also significantly inhibited secretion of the pro-inflammatory cytokines, TNF- α and IL-6, by 35 and 80%, respectively. Mice that received an oral administration of PPH displayed enhanced peritoneal macrophages phagocytic activity in addition to stimulated gut mucosa immune response. The enhanced immune response was typified by an increased number of IgA+ cells in the small intestine lamina propria as well as higher numbers of IL-4+, IL-10+ and IFN- γ + cells38. The authors concluded that the PPH may be used as an alternative therapy to prevent inflammatory-related diseases.

To sum up, there is still a long investigation make use of bioactive peptides from natural resources. In recent years, many companies have been inclined toward manufacture of foods from bioactive peptides. This may be caused by two main factors, technical and price. Functional foods have accounted for the major part of products depend on bioactive peptides and hydrolysates from the nature. Moreover, medicalapplications of this kind ofpeptides areforbidden because of their toxicity of the peptides when applied systemically. Fully synthetic peptides and peptidomimetics have been proposed to overcome any problems. Production of anti-aging cosmetics isbased on bioactive peptides from natural resources with appropriate level.

II. CONCLUSION

There are many varieties of resources of protein hydrolysates from plant, animal origins, chemical, enzymatic, and microbial procedures. Different effects on immune, cardiovascular, nervous, and gastrointestinal systems have been discussed. They have also discussed the functional and antioxidant properties in food systems. Applications of bioactive and challenges depend on the sources from which the peptides and hydrolysates are

obtained. Different methods have been discussed to reduce bitterness of the peptides. Despite a few optimistic findings, no single method has been presented to fully remove the bitter taste of the peptides to be economical in industrial scales.

Recentlya trend in this regard for the characterization and purification of peptides with stronger and more specific effects has beenshown. Although, the recent research is focused in the production of peptide-based foods, there is still a big gap between wide academic findings and commercialization of bioactive peptides from natural products. By considering bioactive activities of these peptides and their effect on health, and millions of deaths caused diseases, it is clear that these peptides can be used for health promotion and slowing down disease risk.

REFERENCES

- Adje, E. Y., Balti, R., Kouach, M., Guillochon, D. and Nedjar-Arroume, N. (2011).a 67–106 of bovine hemoglobin: a new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. Eur. Food Res. Technol. 232:637–646.DOI: 10.4172/2476-2059.1000129
- [2]. Andjelic, C. D., Planelles, V. and Barrows, L. R. (2008). Characterizing the anti-HIV activity of papuamide. Mar. Drugs. 6:528–549.<u>https://doi.org/10.3390/md20080027</u>
- [3]. Aravind, S. R. and Krishnan, L. K. (2016).Curcumin-albumin conjugates as an effective anti-cancer agent with immunomodulatory properties. Int. Immunopharmacol. 34:78–85. http://dx.doi.org/10.1016/j.intimp.2016.02.010
- [4]. Arihara, K. (2006). Strategies for designing novel functional meat products.Meat Sci. 74:219–229.<u>https://doi.org/10.1016/j.meatsci.2006.04.028</u>
- [5]. Ashar, M. N. and Chand, R. (2004). Fermented milk containing ACE-inhibitory peptides reduces blood pressure inmiddleagedhypertensivesubjects.Milchwissenschaft-MilkSci.Int.59:363-366.https://doi.org/10.1016/j.idairyj.2009.07.003
- [6]. Attoub, S., Arafat, H., Mechkarska, M. and Conlon, J. M. (2013).Anti-tumor activities of the host-defense peptide hymenochirin-1B.Regul.Pept. 187:51–56.<u>https://doi.org/10.1016/j.regpep.2013.10.006</u>
- [7]. Aubes-Dufau, I., Capdevielle, J., Seris, J. L. and Combes, D. (1995). Bitter peptide from hemoglobin hydrolysate: isolation and characterization. FEBS Lett. 364:115–119.<u>https://doi.org/10.1016/0014-5793(95)00361-C</u>
- [8]. Babini, E., Tagliazucchi, D., Martini, S., Dei Piu, L. and Gianotti, A. (2017).LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chem. 228:186–196.https://doi.org/10.1007/s00217-018-3074-8
- [9]. Liu, Y.-F., Oey, I., Bremer, P., Silcock, P., Carne, A., & McConnell, M. (2019). Pulsed electric fields treatment at different pH enhances the antioxidant and anti-inflammatory activity of ovomucin-depleted egg white. Food Chemistry, 276, 164-173. doi: 10.1016/j.foodchem.2018.10.009
- [10]. Shavandi, A., Hou, Y., Carne, A., McConnell, M., &Bekhit, A. E.-D.A. (2018). Marine waste utilization as a source of functional and health compounds. InAdvances in food and nutrition research. Elsevier. <u>doi: 10.1016/bs.afnr.2018.08.001</u>
- [11]. Burrow, K., Young, W., Carne, A., McConnell, M., &Bekhit, A. E.-D. (2018). Interactions of milk proteins with minerals. In G. W. Smithers (Ed.), Reference module in food science. Elsevier. doi: 10.1016/B978-0-08-100596-5.22489
- [12]. Hou, Y., Vasileva, E. A., Carne, A., McConnell, M., Bekhit, A. E.-D.A., &Mishchenko, N. P. (2018).Naphthoquinones of the spinochrome class: Occurrence, isolation, biosynthesis and biomedical applications [Review]. RSC Advances, 8(57), 32637-32650.doi: 10.1039/c8ra04777d
- [13]. Burrow, K., Young, W., McConnell, M., Carne, A., &Bekhit, A. E.-D. (2018). Do dairy minerals have a positive effect on bone health? Comprehensive Reviews in Food Science & Food Safety, 17(4), 989-1005.doi: 10.1111/1541-4337.12364
- [14]. Balti, R., Bougatef, A., Sila, A., Guillochon, D., Dhulster, P. and Nedjar-Arroume, N. (2015). Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food <u>Chem</u>. 170:519–525 <u>https://doi.org/10.1016/j.cofs.2016.02.005</u>
- [15]. Banerjee, P. and Shanthi, C. (2012). Isolation of novel bioactive regions from bovine achilles tendon collagen having angiotensin I-converting enzyme-inhibitory properties. Process Biochem. 47:2335–2346.<u>https://doi.org/10.1016/j.procbio.2012.09.012</u>
- [16]. Bao, Y., Wang, J., Li, C., Li, P., Wang, S. and Lin, Z. (2016). A preliminary study on the antibacterial mechanism of Tegillarcagranosa hemoglobin by derived peptides and peroxidase activity. Fish Shellfish Immunol. 51:9–16. <u>https://doi.org/10.1016/j.fsi.2016.02.004</u>
- [17]. Battison, A. L., Summerfield, R. and Patrzykat, A. (2008). Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster Homarusamericanus. Fish Shellfish Immunol. 25:181–187.<u>https://doi.org/10.1016/j.fishres.2016.07.023</u>
- [18]. Benjakul, S., Binsan, W., Visessanguan, W., Osako, K. and Tanaka, M. (2009). Effects of flavourzyme on yield and some biological activities of mungoong, an extract paste from the cephalothorax of white shrimp. J. Food Sci. 74:S73–S80.10.1007/s13197-012-0762-4
- [19]. Bergaoui, I., Zairi, A., Tangy, F., Aouni, M., Selmi, B. and Hani, K. (2013). In vitro antiviral activity of dermaseptin S and derivatives from amphibian skin against herpes simplex virus type 2. J. Med. Virol. 85:272–281.doi: [10.1128/AAC.02142-13]
- [20]. Bernardini, R. D., Mullen, A. M., Bolton, D., Kerry, J., O'Neill, E. and Hayes, M. (2012). Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions. Meat Sci. 90:226–235.<u>https://doi.org/10.1016/j.meatsci.2011.07.008</u>
- [21]. Berthou, J., Migliore-Samour, D., Lifchitz, A., Delettre, J., Floch, F. and Jolles, P. (1987).Immunostimulating properties and three-dimensional structure of two tripeptides from human and cow caseins.FEBS Lett. 218:55–58.<u>https://doi.org/10.3945/ajcn.113.071993</u>
- [22]. Beucher, S., Levenez, F., Yvon, M. and Corring, T. (1994). Effects of gastric digestive products from casein on CCK release by intestinal cells in rat. J. Nutr. Biochem. 5:578–584.doi: <u>[10.1007/s12349-013-0121-7]</u>
- [23]. Boonla, O., Kukongviriyapan, U., Pakdeechote, P., Kukongviriyapan, V., Pannangpetch, P. and Thawornchinsombut, S. (2015). Peptides-Derived from Thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats. Nutrients. 7:5783–5799.<u>https://doi.org/10.3390/nu7075252</u>
- [24]. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guil-lochon, D. and Nasri, M. (2010).Purification and identification ofnovel antioxidant peptides from enzymatic hydrolysates of sardinelle (sardinellaaurita) by-products proteins. Food Chem. 118:559–565.DOI: 10.1016/j.foodchem.2009.05.021

- [25]. Boutrou, R., Gaudichon, C., Dupont, D., Jardin, J., Airinei, G., Marsset-Baglieri, A., Benamouzig, R., Tome, D. and Leonil, J. (2013).Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am. J. Clin. Nutr. 97:1314–1423. <u>https://doi.org/10.1080/10942912.2015.1048356</u>
- [26]. Brandelli, A., Daroit, D. J. and Corr^ea, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Res. Int. 73:149–161.10.1007/s13594-016-0297-y
- [27]. Brantl, V. (1985). Novel opioid peptides derived from human B-Casein:Human b-Casomorphins. Eur. J. Pharmacol. 106:213–214.<u>DOI: 10.1038/305721a0</u>
- [28]. Brantl, V., Gramsch, Ch., Lottspeich, F., Henschen, A., Jaeger, K. H. and Herz, A. (1985). Novel opioid peptides derived from Mitochondrial Cytochrome b: Cytochrophins. Eur. J. Pharmacol. 111:293–294.<u>https://doi.org/10.1271/bbb.70516</u>
- [29]. Burger-van, P. N., Vincent, A., Puiman, P. J., Van der Sluis, M., Bouma, J., Boehm, G., Van Goudoever, J. B., Van Seuningen, I. and Renes, I. B. (2009). The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420:211–219.https://doi.org/10.1080/10937404.2017.1326071
- [30]. Butikofer, U., Meyer, J., Sieber, R. and Wechsler, D. (2007).Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int. Dairy J. 17:968–975.<u>https://doi.org/10.1016/j.idairyj.2006.11.003</u>
- [31].
 Byun, H. G. and Kim, S. K. (2001). Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragrachalcogramma) skin. Process Biochem. 36:1155–1162.https://doi.org/10.1016/S0032-9592(00)00297-1
- [32]. Cakir-Kiefer, C., Roux, Y. L., Balandras, F., Trabalon, M., Dary, A., Lau-rent, F., Gaillard, J. L. and Miclo, L. (2011). In vitro digestibility of r-Casozepine, a benzodiazepine-like peptide from bovine casein, and bio-logical activity of its main proteolytic fragment. J. Agric. Food Chem. 59:4464–4472. DOI: 10.1021/jf104089c
- [33]. Capriotti, A. L., Caruso, G., Cavaliere, C., Samperi, R., Ventura, S., Chiozzi, R. Z. and Lagana, A. (2015). Identification of potential bioactive pepti-des generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Comp. Anal. 44:205–213. <u>DOI: 10.6066/jtip.2018.29.1.1</u>
- [34]. Chabance, B., Jolles, P., Izquierdo, C., Mazoyer, E., Francoual, C., Drouet, L. and Fiat, A. M. (1995). Characterization of an antithrombotic pep-tide from K-casein in newborn plasma after milk ingestion. Brit. J. Nut. 73:583–590. DOI:10.1079/BJN19950060
- [35]. Chabance, B., Marteau, P., Rambaud, J. C., Migliore-samour, D., Boynard, M., Perrotin, P., Guillet, R., Jolles, P. and Fiat, A. M. (1998).Casein peptide release and passage to the blood in humans during digestion of ilk or yogurt.Biochhme. 80:155–165.<u>https://doi.org/10.1016/S0300-9084(98)80022-9</u>
- [36]. Chabeaud, A., Vandanjon, L., Bourseau, P., Jaouen, P. and Guerard, F. (2009). Fractionation by ultrafiltration of a saithe protein hydrolysate (pollachiusvirens): Effect of material and molecular weight cut-off on the membrane performances. J. Food Eng. 91:408–414.<u>https://doi.org/10.1016/j.seppur.2009.02.012</u>
- [37]. Chakrabarti, S., Poidevin, M. and Lemaitre, B. (2014). The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine. https://doi.org/10.1371/journal.pgen.1004659
- [38]. Chalamaiah, M., Dinesh kumar, B., Hemalatha, R. and Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 135:3020–3038.<u>https://doi.org/10.1016/j.foodchem.2012.06.100</u>
- [39]. Chan, Y. S. and Ng, T. B. (2013). Northeast red beans produce a thermo-stable and pH-Stable defensin-Like peptide with potent antifungal activity. Cell.Biochem.Biophys. 66:637–648.doi: <u>10.1007/s12013-012-9508-1</u>
- [40]. Chang, C. Y., Wu, K. C. and Chiang, S. H. (2007). Antioxidant properties and protein compositions of porcine haemoglobinhydrolysates. Food Chem. 100:1537–1543.doi:10.3390/molecules22010187
- [41]. Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J. A. and Bulet, P. (1996).Isolation of several cysteine-rich antimicrobial pepti-des from the blood of a mollusc, mytilusedulis. J. Biol. Chem. 271:21808–21813. DOI:
- [42]. <u>10.1074/jbc.271.36.21808</u>
- [43]. Chaud, M. V., Izumi, C., Nahaal, Z., Shuhama, T., Bianchi, M. D. L. P. and Freitas, O. D. (2002). Iron derivatives from casein hydrolysates as a potential source in the treatment of iron deficiency. J. Agr. Food Chem. 50:871–877.DOI:
- [44]. <u>10.1021/jf0111312</u>
- [45]. Chen, G. W., Tsai, J. S. and Pan, B. S. (2007).Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. Int. Dairy J. 17:641–647.<u>https://doi.org/10.1016/j.idairyj.2006.07.004</u>
- [46]. Chen, H., Zhao, M., Lin, L., Wang, J., Sun-Waterhouse, D., Dong, Y., Zhuang, M. and Su, G. (2015).Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Res. Int. 78:216–223.<u>https://doi.org/10.1016/j.foodres.2015.10.008</u>
- Chen, J. R., Okada, T., Muramoto, K., Suetsuna, K. and Yang, S. C. (2003). Identification of angiotensin I-converting enzyme [47]. inhibitory peptides derived from the peptic digest of soybean protein. Food Biochem. J. 26:543-554.https://doi.org/10.1111/j.1745-4514.2002.tb00772.x
- [48]. Cheung, L. K. Y., Aluko, R. E., Cliff, M. A. and Li-Chan, E. C. Y. (2015).Effects of exopeptidase treatment on antihypertensive activity and taste attributes of enzymatic whey protein hydrolysates. J. Funct. Foods. 13:262–275.<u>https://doi.org/10.1016/j.jff.2014.12.036</u>
- [49]. Chi, C. F., Wang, B., Wang, Y. M., Zhang, B. and Deng, S. G. (2015b).Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodonseptentrionalis) heads.J.Funct. Foods. 12:1–10.https://doi.org/10.1016/j.jff.2014.10.027
- [50]. Chobert, J. M., Bertrand-Harb, C. and Nicolas, M. G. (1988b).Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J. Agr. Food Chem. 36:883–892. DOI: 10.1021/jf00083a002
- [51]. Chobert, J. M., Briand, L., Gueguen, J., Popineau, Y., Larre, C. and Haertle, T. (1996). Recent advances in enzymatic modifications of food proteins for improving their functional properties. Mol. Nutr. Food Res. 40:177– 182.<u>https://doi.org/10.1016/B978-0-12-813280-7.00027-X</u>
- [52]. Chobert, J. M., El-Zahar, K., Sitohy, M., Dalgalarrondo, M., Metro, F., Choiset, Y. and Haertle, T. (2005). Angiotensin I-converting-enzyme (ACE) inhibitory activity of tryptic peptides of ovine b-lactoglobulin and of milk yoghurts obtained by using different starters. Le Lait – Dairy Sci. Tech. 85:141–152. <u>https://doi.org/10.1051/lait:2005005</u>
- [53]. Chobert, J. M., Sitohy, M. Z. and Whitaker, J. R. (1988a). Solubility and emulsifying properties of caseins modified enzymatically by Staphylo-coccus aureus V8 protease. J. Agr. Food Chem. 36:220–224.<u>https://doi.org/10.1080/10408398.2017.1352564</u>
- [54]. Choi, Y. J., Hur, S., Choi, B. D., Konno, K. and Park, J. W. (2009). Enzy-matic hydrolysis of recovered protein from frozen small croaker and functional properties of its hydrolysates. J. Food Sci. 74:C17–C24.<u>https://doi.org/10.1111/j.1750-3841.2008.00988.x</u>

- [55]. Claustre, J., Toumi, F., Trompette, A., Jourdan, G., Guignard, H., Chay-vialle, J. A. and Plaisancie, P. (2002). Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum. Am. J. Physiol. Gas-trointest Liver Physiol. 283:521–528.<u>https://doi.org/10.3382/ps.2011-02062</u>
- [56]. Clemente, A., Vioque, J., Sanchez-Vioque, R., Pedroche, J. and Millan, F. (1999). Production of Extensive Chickpea (Cicerarietinum L.) protein hydrolysates with reduced antigenic activity. J. Agr. Food Chem. 47:3776–3781.DOI:10.1021/jf981315p
- [57]. Cole, A. M., Weis, P. and Diamond, G. (1997). Isolation and characteriza-tion of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272:12008–12013.<u>DOI: 10.1128/AAC.44.8.2039-2045.2000</u>
- [58]. Conlon, J. M., Mechkarska, M., Lukic, M. L. and Flatt, P. R. (2014a).Poten-tial therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides. 57:67–77.<u>https://doi.org/10.1016/j.peptides.2014.04.019</u>
- [59]. Hayes, M.; Stanton, C.; Slattery, H.; O'Sullivan, O.; Hill, C.; Fitzgerald, G.F.; Ross, R.P. Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors. Appl. Environ. Microbiol. 2007, 73, 4658–4667.<u>DOI:10.1128/AEM.00096-07</u>
- [60]. Kudoh, Y.; Matsuda, S.; Igoshi, K.; Oki, T. Antioxidative peptide from milk fermented with Lactobacillus delbrueckii subsp. bulgaricus IFO13953. J. Jpn. Soc. Food Sci. Technol. 2001, 48, 44–50.<u>https://doi.org/10.1016/B978-0-12-809868-4.00024-8</u>
- [61]. Pihlanto, A.; Virtanen, T.; Korhonen, H. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. Int. Dairy J. 2010, 20, 3–10.<u>https://doi.org/10.1016/j.idairyj.2009.07.003</u>
- [62]. Hammes, W.P.; Haller, D.; Ganzle, M.G. Fermented Meat. In Handbook of Fermented Functional Foods; Farnworth, E.R., Ed.; CRC: New York, NY, USA, 2003; pp. 251–269.
- [63]. Ondetti, M.A.; Rubin, B.; Cushman, D.W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 1977, 196, 441–444. DOI: 10.1126/science.191908
- [64]. Iroyukifujita, H.; Eiichiyokoyama, K.; Yoshikawa, M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci. 2000, 65, 564–569.<u>https://doi.org/10.1111/j.1365-2621.2000.tb16049.x</u>
- [65]. Kim, S.-K.; Byun, H.-G.; Park, P.-J.; Shahidi, F. Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. J. Agric. Food Chem. 2001, 49, 2992–2997. <u>https://doi.org/10.1016/j.biortech.2009.05.057</u>
- [66]. Qian, Z.J.; Jung, W.K.; Lee, S.H.; Byun, H.G.; Kim, S.K. Antihypertensive effect of an angiotensin I-converting enzyme inhibitory peptide from bullfrog (Ranacatesbeiana Shaw) muscle protein in spontaneously hypertensive rats. Process Biochem. 2007, 42, 1443–1448. DOI: 10.1016/j.procbio.2007.05.013
- [67]. Saiga, A.; Okumura, T.; Makihara, T.; Katsuda, S.I.; Morimatsu, F.; Nishimura, T. Action mechanism of an angiotensin I-converting enzyme inhibitory peptide derived from chicken breast muscle. J. Agric. Food Chem. 2006, 54, 942–945. DOI: 10.1021/jf0723070
- [68]. Saiga, A.; Iwai, K.; Hayakawa, T.; Takahata, Y.; Kitamura, S.; Nishimura, T.; Morimatsu, F. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagenhydrolysate. J. Agric. Food Chem. 2008, 56, 9586–9591.doi:<u>10.3390/md14020032</u>
- [69]. Ferreira, S.H.; Bartelt, D.C.; Greene, L.J. Isolation of bradykinin-potentiating peptides fromBothropsjararaca venom. Biochemistry 1970, 9, 2583–2593.<u>https://doi.org/10.1016/j.peptides.2006.10.002</u>
- [70]. Vermeirssen, V.; van Camp, J.; Verstraete, W. Optimisation and validation of anangiotensin-converting enzyme inhibition assay for the screening of bioactive peptides.J. Biochem. Biophys. Methods 2002, 51, 75–87.<u>http://hdl.handle.net/1854/LU-157488</u>
- [71]. Shalaby, S.M.; Zakora, M.; Otte, J. Performance of two commonly used angiotensin-convertingenzyme inhibition assays using FA-PGG and HHL as substrates. J. Dairy Res. 2006, 73,178–186.<u>DOI: 10.1017/S0022029905001639</u>
- [72]. Zhang, W.G.; Xiao, S.; Ahn, D.U. Protein oxidation: Basic principles and implications for meat quality. Food Sci. Nutr. 2013, 53, 1191–1201. DOI: 10.12691/jfnr-4-12-7
- [73]. Korhonen, H.; Pihlanto-Leppäla, A.; Rantamäki, P.; Tupasela, T. Impact of pro- cessing on bioactive proteinsand peptides. Trends Food Sci. Technol. 1998, 9, 307–319. <u>https://doi.org/10.1016/S0924-2244(98)00054-5</u>
- [74]. Gobbetti M, Minervini F, Rizzello CG. (2007) pp. 489–517.Bioactive peptides in dairy products. In: Hui YH, editor. Handbook of foodproducts manufacturing. Hoboken: Wiley; Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review.Meat Sci. 2012, 91, 93–98. <u>https://doi.org/10.1016/j.meatsci.2012.02.020</u>
- [75]. Escudero, E.; Mora, L.; Fraser, P.D.; Aristoy, M.C.; Toldrá, F. Identification of novel antioxidant peptidesgenerated in Spanish drycured ham. Food Chem. 2013, 138, 1282–1288.<u>https://doi.org/10.1016/j.foodres.2013.12.001</u>
- [76]. Matsuoka H, Fuke Y, Kaminogawa S, Yamauchi K. Purification and debittering effect of aminopeptidase II fromPenicilliumcaseicolum. J Agric Food Chem 1991;39:1392–5.<u>DOI: 10.1016/S0734-9750(01)00070-2</u>
- [77]. Habibi-Najafi MB, Lee BH. Bitterness in cheese: a review. Crit Rev Food SciNutr1996;36:397–411.DOI: 10.1016/S0734-9750(01)00070-2

Dauda Sa-Adu Abiola" Bioactive peptides from meat and some daily food and their role on human health and nutrition" International Journal of Engineering And Science, vol. 09, no. 01, 2019, pp. 40-51