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ABSTRACT: In this paper, we consider an extension of perturbations to semi-Markov control problems. We 

then study process perturbations in which the instants between transitions are random variables. The 

discounted semi-Markov control problem and the limiting average semi-Markov control problem are 

considered. We proceed to a perturbation on the law transition probabilities and the discounted factor. For this, 

we consider the particular case where the transition time of the original semi-Markov process is a random 

variable that follows an exponential law. 
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I. INTRODUCTION 
 In the case of Markov decision problems, the times between two consecutive decision time points are 

equidistant. In this paper, we consider perturbations of processes, such as the times between transitions are 

random variables. These processes, called semi-Markov control (or decision) processes, were introduced by De 

Cani [18], Howard [22], Jewell [26] and Schweitzer [27]. 

 

II. DEFINITIONS AND PRELIMINARIES 
A Semi-Markov Control Process (SMCP, for short) is observed at decision time points t= 0, 1, …; starting at 

t=0. At each decision time point, the system is in once of a finite number of states and an action has to be 

chosen. 

Let S :={1, 2, …, N} be the state space, and for each s ∈ S let A(s) be the finite set of possible actions in state s. 

If the system is in state s ∈ S and an action a ∈A(s) is chosen, then the following occurs independently of the 

history of the process: 

i) The next state s‟ of the process is chosen according to the transition probability p (s‟/s, a). 

ii) Conditional on the event that the next state is s‟, the time until the transition from s to s‟ occurs is a random 

variable with probability distribution F (. /s, a, s‟). 

iii) If the next decision time point falls after τ units of times, then the reward in this epoch is denoted by r 

(τ, s, a ). 

The transition law p satisfies: 

p (s‟/s, a)  0, s, s‟  ∈ S, a  A(s) and   p (s‟/s, a)s‟∈S = 1, s ∈ S, a  A(s). 

A decision rule πt
 at time t is a function which assigns a probability to the event that any particular action is 

taken at time t. In general πt
 may depend on all realized states up to time t, and on all realized actions up to time 

t-1. 

Let ht = (s0, a0,s1, a1, …, at-1, st ) be the history up to time t where a0  A(s0 ), …, at-1  A( st-1), then πt(ht, . ) is the  

probability distribution on  A(st ), that is,  πt(ht, at ) is the probability of selecting the action at   time t, given the 

history ht. 

A strategy  π  is a sequence of decision rules π = (π0, π1 , … , πt , … ). 
A semi-Markov strategy is one in which πtdepends only on the current state at time t. 

A stationary strategy is semi-Markov strategy with identical decision rules. 

A deterministic strategyπ is a stationary strategy whose single decision rule is nonrandomized: (For any s∈ S, 

there exist as   A(s) such that, π(s, as) = 1). 

Let C, CS and CD denote the sets of all strategies, all stationary strategies and all deterministic strategies 

respectively. 
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If CM is the let of all semi-Markov strategy, then: 

CD⊂CS   CM  C. 

 

III. DISCOUNTED EXPECTED CRITERION 
In order to insure that an infinite number of transitions does not occur in a finite interval, we shall assume 

throughout that the following condition holds: 

For all s, s‟  S, and a  A(s), 

 e−αtdF( 
+∞

0
t/s, a, s‟) < 1; (whereα is a fixed positive real number).(3.0) 

Note that e−αtf( 
+∞

0
t/s, a, s‟) dt represents the expected discount rate. 

For any strategy π ∈ C and any initial state s  S, we define the expected discounted reward V(s, π) by: 

V(s, π):= Eπ[  (e−α)τ0+τ1+⋯+τn−1∞
n=0 r (τn , Xn , Yn ) / X0 =s ];whereτ0 + τ1 + ⋯ + τn−1 := 0 for n=0,  and τn is 

the time between the n-th and the (n+1)-th transition. 

Xnis the observed state at time point τ0 + τ1 + ⋯ + τn−1 

Yn is the chosen action at time point  τ0 + τ1 + ⋯ + τn−1 

For any s ∈ S and  π  C, we pose: 

Vα (s,  ) = ( 1- e−α  ) V (s, π )  

The discounted semi-Markov control problem is defined by the following optimization problem: 

Vα ( s ):= maxπ∈C Vα s, π , s ∈ S. 
A strategy π0 is called optimal (or α-optimal) if for all s  S, 

Vα ( s ) = Vα s, π0 . 

 

Remark 3.1 

It is well known that there exists an optimal deterministic strategy and there are a number of finite algorithms 

for its computation (e.g., Kallenberg [15], Ross [24]). 

For every s, s‟∈ Sand a  A (s), we denote by f(t/ s, a, s‟)the probability density of the distribution F (t/ s, a, s‟). 

We define: for all s, s‟  S and a  A (s) 

 

r  (s, a): =  p(s′/s′ ∈S  s, a)  r t, s, a f( t
+∞

0
 /s, a, s‟) dt                                    (3.1) 

 

p  (s‟/ s, a): = p(s‟/ s, a)  e−αtf( t
+∞

0
 /s, a, s‟) dt.                                                (3.2) 

The following two results can be derived (using analogous proofs) from Kallenberg [15] or Ross [24]. 

 

Lemma 3.1  

For any deterministic strategy π ∈ CD  and s ∈ S, 
Vα s, π =  1 − e−α r (s, π s ) +  p  (s’/ s, π(s)) s′ ∈S Vα(s, π). 

 

Lemma 3.2 

For any s ∈ S, Vα s =  maxa∈A s {(1 − e−α) r (s, 𝑎) +  𝑝  (𝑠’/ 𝑠, 𝑎)) 𝑠′∈𝑆 𝑉𝛼(𝑠′ }. 

Let  𝛤  be the Markov control process defined by:  

𝛤  := < S, {A(s), s∈ 𝑆}, 𝑝 , (1- e−α )r >. 

We define: 

λ ≔ max{ e−αtf( t
+∞

0
 /s, a, s‟) dt, s, s‟ ∈ S,  a  A (s)}. 

 

Remark 3.2 

Note that from the condition   (3.0), it followsthat 𝜆< 1. 

By using the definition (3.2)of , we have that for any s S and  A( s ), 

1 - = 1 -  s, a) s, a, s‟) dt  

 1-  

 0. 

Then    1, for all s  and  A (s). 

From lemma 3.2, we derive that for any s , ( s ) can be interpreted as the optimal value in state s  for the 

MCP  . 
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IV. LIMITING AVERAGE CRITERION 

For any strategy   and initial state s  S, the limiting average reward J (s, )  is defined by: 

J (s, ): = ; 

where  denotes the expected reward in the interval [0, T] when the strategy  is used and the initial 

state is s. That is: 

J (s, : =  s], 

where, n(T): = max { n /  + < T }.   

For any s  S and   A ( s ); the holding time and the immediate reward are defined respectively by: 

 s, a) s, a, s‟) dt, and c‟ (s, a): = r ( , s, a). 

Throughout this Section, it is assumed that: for all   

0< < .  

The limiting average semi-Markov control problem is defined by the following optimization problem: 

 

J ( s ) : =  

A strategy  is called optimal if: 

J ( s, ) = J (s ) for alls ∈ 𝑆. 

It is well known that there exists an optimal deterministic strategy and there are a number of finite algorithms 

for its computation (e.g., see Kallenberg [15], Ross [24]). 

We note that any limiting average semi-Markov control problem can be described by: 

S; {A (s), s  }, p, , c‟.   

5- Perturbations (DiscountedCase) 

We consider a S.M.C.P  = < S, {A(s), s }, p,  

The case of the disturbance of the transition probabilities and the probability density associated with the 

transition time has been studied (see [3]). 

We consider the situation where the law of transition probabilities p and the discounted factor are disturbed, and 

we pose: 

 s, a):= p(s‟/ s, a) +  d(s‟/ s, a); s, s‟  S, a  A(s); 

𝑒−𝛼 =
1

(1+𝜇𝜀 )
 ; where,𝜇 > 0 ,𝜀 ∈]0,𝜀0[, 𝜀0is a fixed positive real number.                              (4.0) 

It is assumed, as in the case of M.C.P, that the perturbed probabilities: 

[  s, a) / s, s‟  S, a  A(s)] are transition probabilities. 

If𝛤 is the original semi-Markov decision process, then we denote by𝛤𝜀  the disturbed S.M.D.P. 

According to Lemma 3.2, the value𝑊𝜀  (optimum of𝛤𝜀 ) must verify the optimality equation:  

For all s∈ S, 

 

(s)= + (s‟/s,a) s,a,s‟)dt (s‟)}, 

Where = (s‟/s,a) s,a) f (t/ s, a, s‟) dt; for anys S, a  A(s). 

We can write: for any s S, a  A(s); 

(s‟/s, a)  s, a) f (t / s, a, s‟) dt  

+ (s‟/s, a)  s, a) f real (t / s, a, s‟) dt. 

If  (s, a) = (s‟/s, a)  s, a) f (t / s, a, s‟) dt, (s S, a  A(s)), 

The optimality equation becomes: 

 

 For all s S,  

(s)= +  (s,a)]  
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+ (s‟/s, a) s, a, s‟) dt (s‟)}.                           (4.1) 

Remark 4.0 

If s, a, s‟) dt = , for all s, s‟ , a  A(s), then 4.1will become: 

For any s S, (s) = +  (s, a)]  

+ (s‟/s,a) (s‟)}                                                                        (4.2)     

Starting from (4.2), we obtain an analogous equationto [2.3] (see [1],(case of disturbance of Markov control 

problems) : 

+ ](s)+ 

r(s, for all s S.         [2.3] 

 

Particular case 

We will now consider a special case that leads to equation [2.3], seen in [1]. 

For this, suppose that the transition time of the original semi-Markov process is a random variable that follows 

an exponential law of parameter:  . 

So, we can write: 

For all s, s‟  S, a  A(s) and t , 

f ( t / s, a, s‟ ) =    .                                                                     (4.3)     

Furthermore: . 

The expression (4.3) induces a perturbation of the probability density f which depends on the factor 

 𝑒−𝛼 : = 
1

(1+𝜇𝜀 )
(see (4.0). 

Considering equation (4.1), write the following whole series development: 

 

. 

We have that: 

(s‟/s,a) s,a,s‟) dt (s‟) = 

(s‟/s,a)  s, a, s‟) dt (s‟). 

Under the convergence hypotheses and according to the theory of generalized integrals, the sum and integral 

signs can be inverted in the previous equality; he comes then: 

(s‟/s,a) s,a,s‟) dt (s‟) = 

(s‟/s,a) (s‟)+ (s‟/s,a) s, a, s‟) dt (s‟) 

+ (s‟/s,a) s, a, s‟) dt (s‟) 

+ (s‟/s,a) s, a, s‟) dt (s‟) + …  

+ (s‟/s,a) s, a, s‟) dt (s‟)+ 

; where is the rest of order n. 

In this last equality we used the relationship: 

 s, a, s‟) dt = 1, (For all  s, s‟  S and  a  A(s)). 

 We then obtain: 

For all s, s‟  S and a  A(s), 

(s‟/s, a) s, a, s‟) dt (s‟) = 
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(s‟/s, a) –  p (s‟ / s, a) s, a, s‟) dt)+ (–  d (s‟ / s, a) s, a, s‟) dt 

+  p (s‟ / s, a) s, a, s‟) dt) 

+ ((  d (s‟ / s, a) s, a, s‟) dt 

) d (s‟ / s, a) s, a, s‟) dt) 

+ …+  d (s‟ / s, a) s, a, s‟) dt 

+ p(s‟/s,a) s, a, s‟) dt + ] (s‟). 

Let n For i [2, n], we pose:   (for all s, s‟  S, a  A(s)); 

( s‟ / s, a )=  d (s‟ / s, a) s, a, s‟) dt 

+ p(s‟/s,a) s, a, s‟) dt, and: 

(s‟ / s, a)= d (s‟ / s, a) -  p (s‟ / s, a) s, a, s‟) dt. 

We can then write: 

For any s  S; 

(s) = +  (s, a)) + (s‟/s, a) 

+ (s‟ / s, a) + (s‟ / s, a) + … +εndn (s′/ s, a)+ ] (s‟)}.        (4.4) 

 

We note that in (4.4), the term in brackets represents a perturbation of order greater than 2 inε. 

Moreover, the ergodic structure of the semi-Markov process can be modified by a strategy of C. 

Thus, if the condition of decomposability is not verified, we will not be able to apply a method analogous to the 

algorithm of the improved strategy that we developed in the case of Markov Decision Problems (see [1]). 

We can conclude that the perturbations of Semi-Markov processes present more difficulties than the case of 

Markov Control Problems. 
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