Three Sequences of Special Dio Triple

*A.Vijayasankar¹,M.A.Gopalan² V.Krithika³

¹Assistant Professor, Department of Mathematics, National College, Trichy-620001, Tamilnadu, India. e ²Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India.
 ³Research Scholar, Dept. of Mathematics, National College, Trichy-620001, Tamilnadu, India.
 Corresponding Author: A.Vijayasankar

Abstract: This paper concerns with the study of constructing three sequences of Dio - triples (a,b,c) such that in each sequence, the product of any two elements with their sum and added by a polynomial with integer coefficient is a perfect square.

Keywords: Dio - triple, Perfect square. 2010 Mathematics Subject Classification: 11D09

Date of Submission: 01-08-2017 Date of acceptance: 12-01-2018

I. Introduction

A set of *m* positive integers $\{a_1, a_2, a_3, ...\}$ is said to have the property D(n), $n \in z - (0)$ if $a_i a_j + a_i + a_j + n$, a perfect square for all $1 \le i \le j \le m$ and such a set is called a Special Dio m – tuples with property D(n). Many mathematicians considered the construction of different formulations of Dio - triples with property D(n), [1-14].

2.1 sequence i

II. Method of Analysis

An attempt is made to form a sequence of Dio - triples $(a,b,c), (b,c,d), (c,d,e), \dots$, with the property $D(n^2 + 2n + 5)$

Case 1 : Let $a = 2n + 3$ and $b = 4n + 2$	
Let c be any non-zero integer.	
Consider $c(2n+4) + n^2 + 4n + 8 = p_1^2$	(1)
as well $c(4n+3)+n^2+6n+7=q_1^2$	(2)
Performing some algebra	
$(4n+3)p_1^2 - (2n+4)q_1^2 = 2n^3 + 3n^2 + 6n - 4$	
by the linear transformations	
$p_1 = X + (2n+4)T$	
$q_1 = X + (4n+3)T$	
By substituting $T = 1$, we have	
X = 3n + 4	
and $p_1 = 5n + 8$.	
From (1), $c = 12n + 14$.	
Hence (a,b,c) is the Special Dio - triple with the property $D(n^2 + 2n + 5)$.	

Case 2: Let b = 4n + 2 and c = 12n + 14Let *d* be any non-zero integer. Consider $d(4n+3) + n^2 + 6n + 7 = p_2^2$ (3)

 $d(12n+15)+n^2+14n+19=q_2^2$ as well (4) Performing some algebra $(12n+15)p_2^2 - (4n+3)q_2^2 = 8n^3 + 28n^2 + 56n + 48$ by the linear transformations $p_2 = X + (4n+3)T$ $q_2 = X + (12n + 15)T$ By substituting T = 1, we have X = 7n + 7and $p_2 = 11n + 10$. From (3), d = 30n + 31. Hence (b, c, d) is the Special Dio - triple with the property $D(n^2 + 2n + 5)$. **Case 3**: Let c = 12n + 14 and d = 30n + 31Let *e* be any non-zero integer. Consider $e(12n+15) + n^2 + 14n + 19 = p_3^2$ (5) $e(30n+32)+n^2+32n+36=q_3^2$ as well (6)Performing some algebra $(30n+32)p_3^2 - (12n+15)q_3^2 = 18n^3 + 53n^2 + 106n + 68$ by the linear transformations $p_3 = X + (12n + 15)T$ $q_3 = X + (30n + 32)T$ By substituting T = 1, we have X = 19n + 22and $p_3 = 31n + 37$. From (5), e = 80n + 90. Hence (c, d, e) is the Special Dio - triple with the property $D(n^2 + 2n + 5)$.

In all the above cases, $(a, b, c), (b, c, d), (c, d, e), \dots$ will form a sequence of Dio - triples. For simplicity and clear understanding, sequence of Dio - triples are exhibited in Table 1 for n=0 to 4.

п	(a,b,c)	(b,c,d)	(c,d,e)	$D(n^2+2n+5)$		
0	(3,2,14)	(2,14,31)	(14,31,90)	<i>D</i> (5)		
1	(5,6,26)	(6,26,61)	(26,61,170)	D(8)		
2	(7,10,38)	(10,38,91)	(38,91,250)	<i>D</i> (13)		
3	(9,14,50)	(14,50,121)	(50,121,330)	D(20)		
4	(11,18,62)	(18,62,151)	(62,151,410)	D(29)		

Sequence II

An attempt is made to form a sequence of Dio - triples $(a,b,c), (b,c,d), (c,d,e), \dots$, with the property D(4n+5)

Case 1: Let a = 4n + 3 and b = 4n + 2Let *c* be any non-zero integer. Consider $c(4n+4)+8n+8=p_1^2$

(7)

as well $c(4n+3)+8n+7=q_1^2$ (8) Performing some algebra $(4n+3)p_1^2 - (4n+4)q_1^2 = -4n-4$ by the linear transformations $p_1 = X + (4n+4)T$ $q_1 = X + (4n+3)T$ By substituting T = 1, we have X = 4n + 4and $p_1 = 8n + 8$. From (7), c = 16n + 14. Hence (a, b, c) is the Special Dio - triple with the property D(4n+5). **Case 2**: Let b = 4n + 2 and c = 16n + 14Let d be any non-zero integer. Consider $d(4n+3)+8n+7 = p_2^2$ (9) $d(16n+15)+20n+19=q_2^2$ as well (10)Performing some algebra $(16n+15)p_2^2 - (4n+3)q_2^2 = 48n^2 + 96n + 48$ by the linear transformations $p_2 = X + (4n+3)T$ $q_2 = X + (16n + 15)T$ By substituting T = 1, we have X = 8n + 7and $p_2 = 12n + 10$. From (9), d = 36n + 31. Hence (b, c, d) is the Special Dio - triple with the property D(4n+5). **Case 3**: Let c = 16n + 14 and d = 36n + 31Let *e* be any non-zero integer. Consider $e(16n+15)+20n+19=p_3^2$ (11) $e(36n+32)+40n+36=q_3^2$ as well (12)

Performing some algebra $(36n+32)p_3^2 - (16n+15)q_3^2 = 80n^2 + 148n + 68$ by the linear transformations $p_3 = X + (16n+15)T$ $q_3 = X + (36n+32)T$ By substituting T = 1, we have X = 24n + 22and $p_3 = 40n + 37$. From (11), e = 100n + 90. Hence (c, d, e) is the Special Dio - triple with the property D(4n + 5). In all the above cases, (a, b, c), (b, c, d), (c, d, e), ... will form a sequence of Dio - triples. For simplicity and clear understanding , sequence of Dio - triples are exhibited in Table 2 for n=0 to 4.

Table 2 : Examples							
п	(a,b,c)	(b,c,d)	(c,d,e)	D(4n+5)			
0	(3,2,14)	(2,14,31)	(14,31,90)	D(5)			
1	(7,6,30)	(6,30,67)	(30,67,190)	D(9)			
2	(11,10,46)	(10,46,103)	(46,103,290)	D(13)			
3	(15,14,62)	(14,62,139)	(62,139,390)	<i>D</i> (17)			
4	(19,18,78)	(18,78,175)	(78,175,490)	<i>D</i> (21)			

Table 2 : Examples

I. Sequence III

An attempt is made to form a sequence of Dio - triples $(a,b,c), (b,c,d), (c,d,e), \dots$, with the property $D(k^{2n+2}+1)$

Case 1: Let
$$a = k^{2n} - 1 - k^{n+1}$$
 and $b = k^{2n} - 1 + k^{n+1}$
Let *c* be any non-zero integer.
Consider $c(k^{2n} - k^{n+1}) + k^{2n} - k^{n+1} + k^{2n+2} = p_1^2$ (13)
as well $c(k^{2n} + k^{n+1}) + k^{2n} + k^{n+1} + k^{2n+2} = q_1^2$ (14)
Performing some algebra
 $(k^{2n} + k^{n+1})p_1^2 - (k^{2n} - k^{n+1})T$
 $p_1 = X + (k^{2n} - k^{n+1})T$
By substituting $T = 1$, we have
 $X = k^{2n}$
and $p_1 = 2k^{2n} - k^{n+1}$.
From (13), $c = 4k^{2n} - 1$.
Hence (a, b, c) is the Special Dio - triple with the property $D(k^{2n+2} + 1)$.
Case 2: Let $b = k^{2n} - 1 + k^{n+1}$ and $c = 4k^{2n} - 1$
Let *d* be any non-zero integer.
Consider $d(k^{2n} + k^{n+1}) + k^{2n} + k^{n+1} + k^{2n+2} = p_2^2$ (15)
as well $d(4k^{2n}) + 4k^{2n} + k^{2n+2} = q_2^2$
Performing some algebra
 $(4k^{2n})p_2^2 - (k^{2n} + k^{n+1})q_2^2 = 3k^{4n+2} - k^{3n+3}$
by the transformations
 $p_2 = X + (k^{2n} + k^{n+1})T$
By substituting $T = 1$, we have
 $X = 2k^{2n} + k^{n+1}$
From (15), $d = 9k^{2n} + 3k^{n+1} - 1$.
Hence (b, c, d) is the Special Dio - triple with the property $D(k^{2n+2} + 1)$.
Case 3: Let $c = 4k^{2n} - 1$ and $d = 9k^{2n} + 3k^{n+1} - 1$

Let *e* be any non-zero integer. Consider $e(4k^{2n}) + 4k^{2n} + k^{2n+2} = p_3^2$ (17) $e(9k^{2n} + 3k^{n+1}) + 9k^{2n} + 3k^{n+1} + k^{2n+2} = q_3^2$ as well (18)Performing some algebra $(9k^{2n} + 3k^{n+1})p_3^2 - (4k^{2n})q_3^2 = 5k^{4n+2} + 3k^{3n+3}$ by the transformations $p_3 = X + \left(4k^{2n}\right)T$ $q_3 = X + (9k^{2n} + 3k^{n+1})T$ By substituting T = 1, we have $X = 6k^{2n} + k^{n+1}$ and $p_3 = 10k^{2n} + k^{n+1}$. From (17). $e = 25k^{2n} + 5k^{n+1} - 1$. Hence (c, d, e) is the Special Dio - triple with the property $D(k^{2n+2}+1)$.

In all the above cases, $(a,b,c), (b,c,d), (c,d,e), \dots$ will form a sequence of Dio - triples. For simplicity and clear understanding, sequence of Dio – triples are exhibited in Table 3 for n=0 to 4.

п	(a,b,c)	(b,c,d)	(c,d,e)	$D(k^{2n+2}+1)$
0	(-k,k,3)	(k,3,3k+8)	(3,3k+8,5k+24)	$D(k^2 + 1)$
1	$(-1,2k^2-1,4k^2-1)$	$(2k^2 - 1, 4k^2 - 1, 12k^2 - 1)$	$(4k^2 - 1, 12k^2 - 1, 30k^2 - 1)$	$D(k^4+1)$
2	$\binom{k^4 - 1 - k^3, k^4 - 1}{k^3, 4k^4 - 1}$	$\binom{k^4 - 1 + k^3, 4k^4 - 1,}{9k^4 + 3k^3 - 1}$	$\begin{pmatrix} 4k^4 - 1,9k^4 + 3k^3 - 1, \\ 25k^4 + 5k^3 - 1 \end{pmatrix}$	$D(k^6+1)$
3	$\binom{k^{6}-1-k^{4},k^{6}-1}{+k^{4},4k^{6}-1}$	$\binom{k^{6}-1+k^{4},4k^{6}-1,}{9k^{6}+3k^{4}-1}$	$\begin{pmatrix} 4k^{6} - 1,9k^{6} + 3k^{4} - 1, \\ 25k^{6} + 5k^{4} - 1 \end{pmatrix}$	$D(k^8+1)$
4	$\binom{k^{8}-1-k^{5},k^{8}-1}{+k^{5},4k^{8}-1}$	$\binom{k^8 - 1 + k^5, 4k^8 - 1,}{9k^8 + 3k^5 - 1}$	$\begin{pmatrix} 4k^8 - 1,9k^8 + 3k^5 - 1, \\ 25k^8 + 5k^5 - 1 \end{pmatrix}$	$D(k^{10}+1)$

Table 3 : Examples

II. Conclusion

This paper concerns with the construction of special dio - triples involving three different sequences of triples, that cannot be extended to a quadruple. One may search for special dio-triples consisting of special numbers with suitable property.

References

- [1]. Abu Muriefah F.S., Al-Rashed .A, Some Diophantine quadruples in the ring Z[] Vol.9, Math. Commun, 2004,,1-8.
- [2]. Assaf.E, Gueron.S, Characterization of regular Diophantine quadruples, Vol.56, Elem. Math.2001,71-81.
- [3]. Bashmakova.I.G(ed.), Diophantus of Alexandria, Arithmetic's and the book of polynomial numbers, Nauka Moscow, 1974
- [4]. Dujella.A, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber.328 1996, 25-30.
- [5]. Dujella.A, Some estimates of the number of Diophantine quadruples, Vol.53, Publ. Math. Debrecen ,1998,177-189.
- [6]. Filipin.A and Fujita.Y, Any polynomial D(4)-quadruple is regular, Vol.13, Math. Commun. 2008,45-55.
- [7]. [7]. Filipin.A, An irregular D(4)-quadruple cannot be extended to a quintuple,Vol.136, Acta Arith.2009,167-176.
- [8]. Franusic Z., Diophantine quadruples in the ring Z[] Vol.9, Math. Commun, 2004, 141-148.
- [9]. Franusic.Z, Diophantine quadruples in Quadratic Fields, Dissertation, University of Zagreb, 2005 (in Croatian)

- [10]. Gopalan.M.A, Srividhya.G, Diophantine quadruples for Fibonacci and Lucas numbers with property D(4). Diophantus J.Math.2012; 1:15-18.
- [11]. Gibbs.P, Diophantine quadruples and Cayley's hyperdeterminant, XXX Mathematics Archive math. NT/0107203
- [12]. Gibbs.P, Adjugates of Diophantine Quadruples Integers . 2010;10:201-209.
- [13]. Srividhya.G, Diophantine quadruples for Fibonacci numbers with property D(1). Indian journal of Mathematics and Mathematical Sciences.2009; 5:57-59.
- [14]. Srividhya.G, Raghunathan.T., Three Different Sequences of Diophantine Triples., JP Journal of Mathematical Sciences., Vol.20., Iss.1 & 2., ., 2017 page no.1-18.

Material Immaterial: social housing in the Netherlands
