Three Sequences of Special Dio Triple

*A.Vijayasankar ${ }^{1}$,M.A.Gopalan ${ }^{2}$, V.Krithika ${ }^{3}$
${ }^{1}$ Assistant Professor, Department of Mathematics,National College, Trichy-620001,Tamilnadu,India. e${ }^{2}$ Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu,India.
${ }^{3}$ Research Scholar, Dept. of Mathematics, National College, Trichy-620001, Tamilnadu, India
Corresponding Author: A.Vijayasankar

Abstract

This paper concerns with the study of constructing three sequences of Dio - triples (a, b, c) such that in each sequence, the product of any two elements with their sum and added by a polynomial with integer coefficient is a perfect square.

Keywords: Dio - triple, Perfect square. 2010 Mathematics Subject Classification: 11D09
Date of Submission: 01-08-2017
Date of acceptance: 12-01-2018

I. Introduction

A set of m positive integers $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is said to have the property $D(n), n \in z-(0)$ if $a_{i} a_{j}+a_{i}+a_{j}+n$, a perfect square for all $1 \leq i \leq j \leq m$ and such a set is called a Special Dio $\mathrm{m}-$ tuples with property $D(n)$. Many mathematicians considered the construction of different formulations of Dio triples with property $D(n)$, [1-14].

II. Method of Analysis

2.1 sequence i

An attempt is made to form a sequence of Dio - triples $(a, b, c),(b, c, d),(c, d, e), \ldots$, with the property $D\left(n^{2}+2 n+5\right)$

Case 1: Let $a=2 n+3$ and $b=4 n+2$
Let c be any non-zero integer.
Consider $c(2 n+4)+n^{2}+4 n+8=p_{1}^{2}$
as well $\quad c(4 n+3)+n^{2}+6 n+7=q_{1}^{2}$
Performing some algebra
$(4 n+3) p_{1}^{2}-(2 n+4) q_{1}^{2}=2 n^{3}+3 n^{2}+6 n-4$
by the linear transformations
$p_{1}=X+(2 n+4) T$
$q_{1}=X+(4 n+3) T$
By substituting $T=1$, we have
$X=3 n+4$
and $p_{1}=5 n+8$.
From (1), $c=12 n+14$.
Hence (a, b, c) is the Special Dio - triple with the property $D\left(n^{2}+2 n+5\right)$.

Case 2: Let $b=4 n+2$ and $c=12 n+14$
Let d be any non-zero integer.
Consider $d(4 n+3)+n^{2}+6 n+7=p_{2}^{2}$
as well $\quad d(12 n+15)+n^{2}+14 n+19=q_{2}^{2}$
Performing some algebra
$(12 n+15) p_{2}^{2}-(4 n+3) q_{2}^{2}=8 n^{3}+28 n^{2}+56 n+48$
by the linear transformations
$p_{2}=X+(4 n+3) T$
$q_{2}=X+(12 n+15) T$
By substituting $T=1$, we have
$X=7 n+7$
and $p_{2}=11 n+10$.
From (3), $d=30 n+31$.
Hence (b, c, d) is the Special Dio - triple with the property $D\left(n^{2}+2 n+5\right)$.
Case 3: Let $c=12 n+14$ and $d=30 n+31$
Let e be any non-zero integer.
Consider $e(12 n+15)+n^{2}+14 n+19=p_{3}^{2}$
as well $\quad e(30 n+32)+n^{2}+32 n+36=q_{3}^{2}$
Performing some algebra
$(30 n+32) p_{3}^{2}-(12 n+15) q_{3}^{2}=18 n^{3}+53 n^{2}+106 n+68$
by the linear transformations
$p_{3}=X+(12 n+15) T$
$q_{3}=X+(30 n+32) T$
By substituting $T=1$, we have
$X=19 n+22$
and $p_{3}=31 n+37$.
From (5), $e=80 n+90$.
Hence (c, d, e) is the Special Dio - triple with the property $D\left(n^{2}+2 n+5\right)$.
In all the above cases, $(a, b, c),(b, c, d),(c, d, e), \ldots$. will form a sequence of Dio - triples. For simplicity and clear understanding, sequence of Dio - triples are exhibited in Table $1 \quad$ for $n=0$ to 4 .

Table 1 : Examples

n	(a, b, c)	(b, c, d)	(c, d, e)	$D\left(n^{2}+2 n+5\right)$
0	$(3,2,14)$	$(2,14,31)$	$(14,31,90)$	$D(5)$
1	$(5,6,26)$	$(6,26,61)$	$(26,61,170)$	$D(8)$
2	$(7,10,38)$	$(10,38,91)$	$(38,91,250)$	$D(13)$
3	$(9,14,50)$	$(14,50,121)$	$(50,121,330)$	$D(20)$
4	$(11,18,62)$	$(18,62,151)$	$(62,151,410)$	$D(29)$

Sequence II

An attempt is made to form a sequence of Dio - triples $(a, b, c),(b, c, d),(c, d, e), \ldots$, with the property $D(4 n+5)$
Case 1: Let $a=4 n+3$ and $b=4 n+2$
Let c be any non-zero integer.
Consider $c(4 n+4)+8 n+8=p_{1}^{2}$
as well $\quad c(4 n+3)+8 n+7=q_{1}^{2}$
Performing some algebra
$(4 n+3) p_{1}^{2}-(4 n+4) q_{1}^{2}=-4 n-4$
by the linear transformations
$p_{1}=X+(4 n+4) T$
$q_{1}=X+(4 n+3) T$
By substituting $T=1$, we have
$X=4 n+4$
and $p_{1}=8 n+8$.
From (7), $c=16 n+14$.
Hence (a, b, c) is the Special Dio - triple with the property $D(4 n+5)$.
Case 2: Let $b=4 n+2$ and $c=16 n+14$
Let d be any non-zero integer.
Consider $d(4 n+3)+8 n+7=p_{2}^{2}$
as well $\quad d(16 n+15)+20 n+19=q_{2}^{2}$
Performing some algebra
$(16 n+15) p_{2}^{2}-(4 n+3) q_{2}^{2}=48 n^{2}+96 n+48$
by the linear transformations
$p_{2}=X+(4 n+3) T$
$q_{2}=X+(16 n+15) T$
By substituting $T=1$, we have
$X=8 n+7$
and $p_{2}=12 n+10$.
From (9), $d=36 n+31$.
Hence (b, c, d) is the Special Dio - triple with the property $D(4 n+5)$.
Case 3: Let $c=16 n+14$ and $d=36 n+31$
Let e be any non-zero integer.
Consider $e(16 n+15)+20 n+19=p_{3}^{2}$
as well $\quad e(36 n+32)+40 n+36=q_{3}^{2}$
Performing some algebra
$(36 n+32) p_{3}^{2}-(16 n+15) q_{3}^{2}=80 n^{2}+148 n+68$
by the linear transformations
$p_{3}=X+(16 n+15) T$
$q_{3}=X+(36 n+32) T$
By substituting $T=1$, we have
$X=24 n+22$
and $p_{3}=40 n+37$.
From (11), $e=100 n+90$.
Hence (c, d, e) is the Special Dio - triple with the property $D(4 n+5)$.
In all the above cases, $(a, b, c),(b, c, d),(c, d, e), \ldots$. will form a sequence of Dio - triples. For simplicity and clear understanding, sequence of Dio - triples are exhibited in Table 2 for $\mathrm{n}=0$ to 4.

Table 2 : Examples

n	(a, b, c)	(b, c, d)	(c, d, e)	$D(4 n+5)$
0	$(3,2,14)$	$(2,14,31)$	$(14,31,90)$	$D(5)$
1	$(7,6,30)$	$(6,30,67)$	$(30,67,190)$	$D(9)$
2	$(11,10,46)$	$(10,46,103)$	$(46,103,290)$	$D(13)$
3	$(15,14,62)$	$(14,62,139)$	$(62,139,390)$	$D(17)$
4	$(19,18,78)$	$(18,78,175)$	$(78,175,490)$	$D(21)$

I. Sequence III

An attempt is made to form a sequence of Dio - triples $(a, b, c),(b, c, d),(c, d, e), \ldots$, with the property $D\left(k^{2 n+2}+1\right)$

Case 1: Let $a=k^{2 n}-1-k^{n+1}$ and $b=k^{2 n}-1+k^{n+1}$
Let c be any non-zero integer.
Consider $c\left(k^{2 n}-k^{n+1}\right)+k^{2 n}-k^{n+1}+k^{2 n+2}=p_{1}^{2}$
as well $\quad c\left(k^{2 n}+k^{n+1}\right)+k^{2 n}+k^{n+1}+k^{2 n+2}=q_{1}^{2}$
Performing some algebra
$\left(k^{2 n}+k^{n+1}\right) p_{1}^{2}-\left(k^{2 n}-k^{n+1}\right) q_{1}^{2}=2 k^{3 n+3}$
by the transformations
$p_{1}=X+\left(k^{2 n}-k^{n+1}\right) T$
$q_{1}=X+\left(k^{2 n}+k^{n+1}\right) T$
By substituting $T=1$, we have
$X=k^{2 n}$
and $p_{1}=2 k^{2 n}-k^{n+1}$.
From (13), $c=4 k^{2 n}-1$.
Hence (a, b, c) is the Special Dio - triple with the property $D\left(k^{2 n+2}+1\right)$.
Case 2: Let $b=k^{2 n}-1+k^{n+1}$ and $c=4 k^{2 n}-1$
Let d be any non-zero integer.
Consider $d\left(k^{2 n}+k^{n+1}\right)+k^{2 n}+k^{n+1}+k^{2 n+2}=p_{2}^{2}$
as well $\quad d\left(4 k^{2 n}\right)+4 k^{2 n}+k^{2 n+2}=q_{2}^{2}$
Performing some algebra
$\left(4 k^{2 n}\right) p_{2}^{2}-\left(k^{2 n}+k^{n+1}\right) q_{2}^{2}=3 k^{4 n+2}-k^{3 n+3}$
by the transformations
$p_{2}=X+\left(k^{2 n}+k^{n+1}\right) T$
$q_{2}=X+\left(4 k^{2 n}\right) T$
By substituting $T=1$, we have
$X=2 k^{2 n}+k^{n+1}$
and $p_{2}=3 k^{2 n}+2 k^{n+1}$.
From (15), $d=9 k^{2 n}+3 k^{n+1}-1$.
Hence (b, c, d) is the Special Dio - triple with the property $D\left(k^{2 n+2}+1\right)$.
Case 3: Let $c=4 k^{2 n}-1$ and $d=9 k^{2 n}+3 k^{n+1}-1$

Let e be any non-zero integer.
Consider $e\left(4 k^{2 n}\right)+4 k^{2 n}+k^{2 n+2}=p_{3}^{2}$
as well $\quad e\left(9 k^{2 n}+3 k^{n+1}\right)+9 k^{2 n}+3 k^{n+1}+k^{2 n+2}=q_{3}^{2}$
Performing some algebra
$\left(9 k^{2 n}+3 k^{n+1}\right) p_{3}^{2}-\left(4 k^{2 n}\right) q_{3}^{2}=5 k^{4 n+2}+3 k^{3 n+3}$
by the transformations
$p_{3}=X+\left(4 k^{2 n}\right) T$
$q_{3}=X+\left(9 k^{2 n}+3 k^{n+1}\right) \Gamma$
By substituting $T=1$, we have
$X=6 k^{2 n}+k^{n+1}$
and $p_{3}=10 k^{2 n}+k^{n+1}$.
From (17), $e=25 k^{2 n}+5 k^{n+1}-1$.
Hence (c, d, e) is the Special Dio - triple with the property $D\left(k^{2 n+2}+1\right)$.
In all the above cases, $(a, b, c),(b, c, d),(c, d, e), \ldots$. will form a sequence of Dio - triples. For simplicity and clear understanding, sequence of Dio - triples are exhibited in Table 3 for $\mathrm{n}=0$ to 4.

Table 3 : Examples

n	(a, b, c)	(b, c, d)	(c, d, e)	$D\left(k^{2 n+2}+1\right)$
0	$(-k, k, 3)$	$(k, 3,3 k+8)$	$(3,3 k+8,5 k+24)$	$D\left(k^{2}+1\right)$
1	$\left(-1,2 k^{2}-1,4 k^{2}-1\right)$	$\left(2 k^{2}-1,4 k^{2}-1,12 k^{2}-\left(4 k^{2}-1,12 k^{2}-1,30 k^{2}-\right.\right.$	$D\left(k^{4}+1\right)$	
2	$\binom{k^{4}-1-k^{3}, k^{4}-1}{+k^{3}, 4 k^{4}-1}$	$\binom{k^{4}-1+k^{3}, 4 k^{4}-1}{,9 k^{4}+3 k^{3}-1}$	$\binom{4 k^{4}-1,9 k^{4}+3 k^{3}-1}{,25 k^{4}+5 k^{3}-1}$	$D\left(k^{6}+1\right)$
3	$\binom{k^{6}-1-k^{4}, k^{6}-1}{+k^{4}, 4 k^{6}-1}$	$\binom{k^{6}-1+k^{4}, 4 k^{6}-1}{,9 k^{6}+3 k^{4}-1}$	$\binom{4 k^{6}-1,9 k^{6}+3 k^{4}-1}{,25 k^{6}+5 k^{4}-1}$	$D\left(k^{8}+1\right)$
4	$\binom{k^{8}-1-k^{5}, k^{8}-1}{+k^{5}, 4 k^{8}-1}$	$\binom{k^{8}-1+k^{5}, 4 k^{8}-1}{,9 k^{8}+3 k^{5}-1}$	$\binom{4 k^{8}-1,9 k^{8}+3 k^{5}-1}{,25 k^{8}+5 k^{5}-1}$	$D\left(k^{10}+1\right)$

II. Conclusion

This paper concerns with the construction of special dio - triples involving three different sequences of triples, that cannot be extended to a quadruple. One may search for special dio-triples consisting of special numbers with suitable property.

References

[1]. Abu Muriefah F.S , Al-Rashed .A, Some Diophantine quadruples in the ring Z[] Vol.9, Math. Commun, 2004,,1-8.
[2]. Assaf.E , Gueron.S, Characterization of regular Diophantine quadruples, Vol.56, Elem. Math.2001,71-81.
[3]. Bashmakova.I.G(ed.), Diophantus of Alexandria, Arithmetic's and the book of polynomial numbers, Nauka Moscow, 1974
[4]. Dujella.A, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 1996, 25-30.
[5]. Dujella.A, Some estimates of the number of Diophantine quadruples, Vol.53, Publ. Math. Debrecen ,1998,177-189.
[6]. Filipin.A and Fujita.Y, Any polynomial D(4)-quadruple is regular, Vol.13, Math. Commun. ,2008,45-55.
[7]. [7]. Filipin.A, An irregular D(4)-quadruple cannot be extended to a quintuple,Vol.136, Acta
Arith,2009,167-176.
[8]. Franusic Z., Diophantine quadruples in the ring Z[] Vol.9, Math. Commun , 2004, 141-148.
[9]. Franusic.Z, Diophantine quadruples in Quadratic Fields, Dissertation, University of Zagreb, 2005 (in Croatian)
[10]. Gopalan.M.A, Srividhya.G, Diophantine quadruples for Fibonacci and Lucas numbers with property D(4). Diophantus J.Math.2012; 1:15-18.
[11]. Gibbs.P, Diophantine quadruples and Cayley's hyperdeterminant, XXX Mathematics Archive math. NT/0107203
[12]. Gibbs.P, Adjugates of Diophantine Quadruples Integers . 2010;10:201-209.
[13]. Srividhya.G, Diophantine quadruples for Fibonacci numbers with property D(1). Indian journal of Mathematics and Mathematical Sciences.2009; 5:57-59.
[14]. Srividhya.G, Raghunathan.T.,Three Different Sequences of Diophantine Triples., JP Journal of Mathematical Sciences., Vol.20.,Iss. 1 \& 2 ., ., 2017 page no.1-18.

[^0]
[^0]: Material Immaterial: social housing in the Netherlands

