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Abstract: Scientific computation aims to analyze and predict natural and engineered phenomena for human 

understanding. Specific quantification of physical variables requires annotations of physical units, either basic, 

or derived. State-of-the-art computation uses the object-oriented programming (OOP) features using a number 

of processing cores. In translating scientific governing equations to computer programming, developers are still 

responsible to use and convert physical units to provide meaningful results. In this paper, we indicate some 

incoherency of SI units and propose possible ways to minimize unintended numerical errors. We use standard 

Fortran 90 as a programming language and discuss how physical units can be specified and checked during 

code compilations and executions.   
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I. Introduction 

Computational research in scientific disciplines often requires computer programming using advanced 

languages. Coding refers to translation of mathematical and logical representations using the programming 

languages as interfaces between humans and computers. These programming languages can be classified into 

compilers and interpreters. Compiling languages such as C/C++ and Fortran (FORmular TRANslator) 77/90 

create executable files, which run faster than script languages, but are not usually compatible between different 

operating systems (OSs) [1]. Script languages such as python, Java script, R, Perl and tcl/tk interpret and 

process written instructions in their kernels sequentially. Advanced script languages such as Mathematica, 

MATLAB/Octave, Maple/Maxima, and python, use a wide variety of prebuilt numerical and graphical libraries 

for efficient and flexible simulations. A language developed by Google Inc., called “go”, is a new interpreter, 

which can compile go-scripts to make executable files. Usage of “go” in the scientific community is limited due 

to the lack of prebuilt libraries. These script languages provide a convenient programming environment in which 

programmers can test and revise local codes intermittently. Coding statements, checking values, and debugging 

lines can be done almost simultaneously in the development stage. However, script languages are often limited 

to small, serial applications using a single process unit. For large-scale parallel computation, compiling 

languages are still predominantly used in parallel computing communities because compilers provide 

deterministic memory handling and invariant data types.  

Parallel programming uses an open multi-processing interface (OMP) and a message passing interface 

(MPI), which are executed in shared and distributed memory systems, respectively. OMP-MPI hybrid 

programming is possible using distributed hardware consisting of multi-core CPUs. Parallel communication 

requires robust specification of data types and sizes for cooperative execution of distributed tasks among 

computing cores. Changing a data type of a variable using dynamic memory allocation is highly discouraged in 

parallel programming although it is considered as an advantage in serial script programming. In this case, global 

data should be well structured and assigned for processors to access, modify and share. Even distribution of 

tasks among processors, called load balance, is a key for successful parallel computing, which requires data 

specification. The conventional compilers such as C and/or F77 for numerical computation are designed for 

structured programming using the basic data types (e.g., integers, float or real, double) and structures (e.g., 

scalars, vectors, and matrices). In the past decades, object-oriented programming (OOP) became a critical 

programming feature in developing large-scale, high-performance, parallel programs for supercomputers. OOP 

developers can customize data structure as a combination of standard types to enhance speedy development and 

scalable execution [2].  

In computational research, governing equations are solved for physically meaningful variables using 

adequate algorithms. Initial and boundary conditions need to be properly set prior to simulation runs. Fixed 

parameters are often stored separately and retrieved from customized libraries. While numerical computations 
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consist of a series of basic operations such as addition/subtraction and multiplication/division of variables, their 

numerical values have specific physical units (i.e., dimensions). If the variables containing physical units, for 

example momenta, forces/torques, and energies in classical or statistical mechanics, are compared and operated, 

they should have the same physical units. Use of consistent units can significantly minimize any unintended 

errors and noticeably increase the computational reliability. If two variables of different units are multiplied, 

then the product should have a new physical meaning, for example, mass times a linear velocity gives the linear 

momentum ( ). A perfectly inelastic collision makes two individual objects one combined body, having 

a total mass equal to the sum of two masses. In general, only variables of the same unit can be added or 

subtracted. Although computational speed has been enhanced tremendously in the last few decades, handling 

units of physical variables still remains in a burgeoning stage, and is still subject to the responsibility of 

programmers and end-users. This is primarily because the programs are developed to only compute numerical 

and logical values in the mathematical aspect, and more importantly, most programming languages do not have 

intrinsic methods to deal with standard physical units for scientific and engineering calculations.  

There have been a number of programming languages used for computational purposes for sciences 

and engineering. As both hardware and software develop quickly to meet needs and requirements for specific 

applications, no single programming language is predominantly used. From early 1970s to the present, 

compilers such as C/C++ and Fortran 77/90 have been widely used in communities of computer and software 

engineering. Fortran 77 was standardized in 1977, and Fortran 90 includes some advanced feature of C/C++, 

which are dynamic memory allocation and free format. Object oriented programming (OOP) features are 

officially included in Fortran 003 [3,4]. In general, C/C++ has much wider scope and functionalities than the 

latest Fortran, but there are several reasons that Fortran will continue to be used [5]. This is because, in our 

opinion, standard Fortran compilers continually incorporate advanced programming features such as OOP and 

polymorphism, some applications previously developed using Fortran do not require any updates, and more 

importantly legacy libraries [6] built using Fortran in the 1980s and 1990s can be called into C/C++ programs 

using cross-compiling. In our opinion, Fortran is a language, in which code lines are very close to pure 

mathematical formula. In this paper, we aim to develop a programming method to use and check physical units 

during compilation and execution phases using Fortran90 as an OOP compiling language for computational 

research and education. Our approach can be, however, readily applied to other OOP-featured languages.  

 

II. Background 
Software using physical units  

Basic units used in physics and engineering are listed in Table 1 from the National Institute of 

Standards and Technology (NIST) [7]. The seven basic quantities are length, mass, time, (electric) current, 

temperature, substance number, and luminous intensity. To the best of our knowledge, there are only a limited 

number of software programs which incorporate physical units during simulations. OpenFOAM (OF), an open 

source software for computational fluid dynamics (CFD), is one of them and it became a popular package 

recently for multi-physics simulations in various engineering disciplines [8]. Basic units employed in 

OpenFOAM are identical to those in Table 1 with a slightly different sequence. Since OpenFOAM was 

developed originally for CFD, quantities for chemical, electrical, and optical phenomena are less frequently 

used. Table 3 includes units and their unit arrays of frequently used physical variables in science and 

engineering. Physical quantities are classified by their nature.  

 
Related work  

To the best of our knowledge, the idea of implementing physical units into numerical computation was 

proposed by Petty [9]. A new data type, preal (“Physical REAL”) was introduced as a combination of a REAL 

(float) variable and an integer array of seven elements (let us call it a unit array). All derived units such as speed, 

acceleration, force, and energy are represented using the seven integers. Three types of operations are 

considered: addition/subtraction, multiplication/division, and exponentiation of the real variables. When two 

real variables have the same unit(s), addition and subtraction of the two variables requires checking the 

identicalness of their unit arrays. For multiplication and division of two real variables, the unit arrays are added 

or subtracted since the seven elements represent the power of the basic units. When one real variable is squared, 

each of the elements needs to be multiplied by 2. In addition to standard unit handling, unit conversion between 

two different units of the same variables was also considered, e.g., feet vs. meters, and meters per second vs. 

miles per hour.  

Recently, some SI units were thoroughly investigated for periodic phenomena by Mohr and Phillips 

[10]. By convention, the angular displacement is measured using degrees or radians. Due to the direct 

connection between the angular displacement and the perimeter length, radians are more frequently used in 

computational research, while degrees are used mainly for educational purposes. Hertz (Hz) is defined as the 

number of cycles per second. Accurate representation of Hz is  
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  (1) 

by implicitly defining 1 cycle equal to  in radians. A potential confusion occurs when Hz is defined as 1/s, 

in which 1 can be considered either in cycles or radians. They concluded that the unit Hz cannot be regarded as 

a coherent SI unit, because if cycles are omitted then Hz may be replaced by 1 (rad)/s. In our opinion, 

clarification of the angular frequency or angular velocity, often denoted as , can be made using units of either 

rev. (revolution)/s or rad/s. If a certain object performs a periodic motion for a long duration, rev./s is an 

intuitive, convenient unit. On the other hand, if relative motion of two colliding bodies is of interest, then the 

angular displacement  must be much smaller than  so that rad/s can be a proper unit. The primary 

reason that radian is often omitted in the unit handling is because it is defined as the ratio of an arc length 

divided by the radius of a circle. To eliminate any confusion and reduce numerical errors, it must be better to, in 

our opinion, include radian as a standard unit.  

Orchard et al. [11] claimed that the concept of inferring units of measure have been established in the 

research literature for a long time, but has not been actively adopted in scientific computing. They extended the 

Fortran language which allows automatic verification of units and more importantly developed a technique for 

reporting to the user a set of critical variables which should be explicitly annotated with physical units. Once 

these features are officially implemented in the Fortran standard or other languages, computational research on 

physical phenomena will be in a more robust programming framework. Contrastin et al. [12] further emphasized 

the importance of using units in scientific computation because unit annotation can significantly reduce the 

debugging effort, and programmers can be more confident in consistency and robustness of their codes. The 

next revision of the language (Fortran 2015) is planned for release in mid-2018 [13], to include further 

interoperability between Fortran and C, additional parallel features, for interoperability between Fortran and C. 

It is proposed that unit annotations are included in Fortran 2015 [14].  

 

III. Programming Methods 
3.1. Modules for unit annotation 

Fig. 1 shows the first part of the module file containing conventional data types with specific unit 

annotations. A type, variable_real (line 2–7), is for a real number with a specific physical unit. In this type, there 

are four members: unt(1:7), dim(1:7), str, and val. The first member, unt, is an integer vector consisting of the 

seven elements, having the same sequence as shown in Table 2. The second and third members, dim and str, 

represent the physical unit in an easily recognizable form. Physically meaningful value is stored in the fourth 

member, val. In line 9–14, the data type of an integer variable has the same member structure. In mechanics, a 

vector of three components is frequently used in 3D spaces. The data type, variable_vec3, is especially for these 

3-element vectors such as position, velocity, momentum and so forth. In comparison to variable_real, 

variable_vec3 has three physical values in a vector form. The length of a vector is arbitrarily determined by 

users or developers as needed. Dynamic memory allocation provides a flexible use of a customized vector by 

assigning the vector length (i.e., the number of elements) after the physical variable is declared. variable_vecn 

contains an allocatable vector vecn(:). Because each of the vector elements must have the same unit, the first 

three members of unit, dim, and str do not need to change in line 24–26 of Fig. 1. The same approach is used to 

define a new data type, variable_matn, for a matrix of arbitrary lengths of rows and columns, i.e., matn(:,:). Fig. 

2 shows a function chkunts, which compares units of two variables. The returned results of this function is a 

logical value, denoted as ucheck, which is either true (T) of false (F). Two integer arrays are inputted as Aunit 

and Bunit, and their difference of each element is calculated as Cunit = Aunit - Bunit. If all the seven elements 

of Cunit are zero, then two variables associated to Aunit and Bunit have the same unit.  

Fig. 3 is an example main program that shows how to assign a value and unit of a real, scalar variable. 

Initially, myMass is set as 10 kg with the unit array of (/1,0,0,0,0,0,0/) in lines 11 and 12, and -, -, and 

-directional components of myVelocity are set as 1.0, 2.0 and 3.0 m/s, respectively, with the unit array of 

(/0,1,-1,0,0,0,0/). The numerical values of myMass and myVelocity are printed to the screen with specific 

formats in lines 18–24. Units of these variables are compared and inequality of these units is presented using a 

logical value false, F, in lines 26–31. A scalar myMass and a 3D vector myVelocity are multiplied to calculate 

myLinearMomentum as a 3D vector. The unit of myLinearMomentum is derived by adding myMass%unt and 

myVelocity%unt element by element implicitly. The final element-values and unit of myLinearMomentum are 

printed to the screen. Specific outcomes by executing the main program of Fig. 3 are shown in Fig. 4.  

 
3.2. Modules for basic operations 

Fig. 5 shows another module containing exemplary mathematical operations with unit annotations for addition 

of two real scalar variables, plusReal, and dot-product of two vectors of arbitrary length, dot_vectors. Usage of 

these operators is shown in a main program of Fig. 6. In the main program, basic_app.f90,  

 Scalar values of myMass [kg] and myTime [s] are set to be 10.0 and 5.0 in lines 10 and 14, respectively.  
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 In line 19, these two heterogeneous variables are added using the customized operator (.plusReal.), and, as 

expected, the operation is failed to calculate mySum1.  

 In line 27, two scalar variables having both a dimension of time time dimension are added and its sum, 

mySum2, is properly calculated.  

 In lines 34 – 39, myVelocity1 is set to be (1.0, 2.0, 3.0) [m/s] and the member myVelocity2%vec3 is set to 

be 2.0*myVelocity1%vec3.  

 In line 51, units of myVelocity1 and myVelocity2 are checked.  

 In line 54, the two velocities are multiplied using customized operator (.dot.) and the magnitude is 

calculated as mySpeedSq%val = . mySpeedSq has the unit of 

speed squared, which are calculated as the sum of unit-arrays of myVelocity1 and myVelocity2 in line 55.  

 

Specific outputs to the screen are captured and shown in Fig. 7. More functions can be developed and 

included in basicop module. Subtraction of real B from real A can be easily calculated by replacing B by -B and 

adding -B to A in function plusReal in Fig. 5. Note that lengths of two input vectors A and B to dot_vectors are 

not specified. As long as the sizes of vectors A and B vectors are the same, .dot. operation will proceed. One can 

extend dot_vectors to dot_matrices for multiplication of two matrices, having the first matrix’s column number 

equal to the second matrix’s row number. But, f90 already has an intrinsic function of matmul, requiring the 

same structural condition for two multiplied matrices. In this case, only units can be compared and/or added. 

Exponentiation operation can be done similarly to multiplication. The unit-array needs to be multiplied by the 

exponent power.  

If the future Fortran release has a functionality that data type and its member structure of an input 

variable can be detected inside functions and subroutines, then the current approach of having three additional 

members, %unt, %dim, and %str, can be much more efficient. To the best of our knowledge, this is not possible 

in general. Pointers can be used for the same purpose, but it still requires pointers be declared pointers with 

specific data types (either basic or customized).  

 

IV. Concluding Remarks 
Fortran is a programming language, originally developed for numerical computations. Recent releases 

of Fortran compilers include OOP features for advanced programming. A physical variable can be treated as an 

object having at least two members, i.e., the inter array of seven elements of unit exponents and a data member 

(of scalar, vector, or matrix). Using the unit-array, developers can easily check the consistency of physical units 

during a series of arithmetic operations. For addition and subtraction between two physical quantities, the 

identicalness of two quantities needs to be confirmed. For multiplication and division of two quantities, the 

resulting quantity should have a unit as an addition and subtraction of two unit-arrays, respectively.  

We believe that the unit annotation will be included in advanced programming languages as such 

annotation is highly needed for coherent and robust computation. As described above, the next release of 

Fortran 2015 in 2018 or a later version may have intrinsic ways to include the unit annotations by declaring 

variables or using functions (or subroutines). Conversion between two units of the same variables is also 

suggested such as between meters [m] and feet [ft], meter per second [m/s] and miles per hour [mile/h], and 

pounds per squared inch [psi] and Pascal [Pa]. If these unit-handling features are included in the future version 

of Fortran, it must would be the first compiling language, which can that could check and convert units of 

physical variables. There are seven basic units from which conventional units are derived. In our opinion, 

adding radian as the eighth basic unit may enhance coherency of the unit annotations, especially for applications 

in rotational dynamics and wave mechanics.  

GNU released version 2.13 of a software package, Units, which can convert quantities expressed in one 

measurement system to its equivalent in another system [15]. GNU Units has an annotated, extendable database 

of more than two hundred prebuilt measurement units. In a Unix/Linux terminal, executing ’units’ in a 

command line will initiate its usage. GNU Octave has an interface to GNU Units [16], which allows 

programmers to declare both value and unit of a quantity. The Octave syntaxes with Units are very similar to 

OOP programming in C++. The main object and its members are separated by a dot (.), while the separator of 

Fortran is %. GNU gfortran uses % only and Intel Fortran (ifort) allows the use of either dot (.) or %. GNU 

Units is written in C and easily compiled using gcc. There are only five .c files with a total number of lines of 

about nine thousand. We believe that incorporating GNU gfortran and Units can be the first consistent step to 

handle unit annotations in Fortran programming. This may include forceful declaration of units even for 

numbers in pure mathematics.  

One of biggest differences between f77 and f90 is the dynamic memory allocation. f77 has, however, 

implicit dynamic memory allocation if an array size is small. One can pass a matrix name and its sizes as 

arguments of a subroutine while the matrix sizes are not predetermined in the subroutine. It is also possible to 

pass a 2D matrix to a subroutine and receive it as a packed 1D array in the subroutine. These sophisticated 
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features of f77 are clearly included in f90 as standard functionalities. In f90, if a variable is declared an intrinsic 

data type such as a real array, its size  can be measured inside the subroutine. If developers define new 

customized data types as objects consisting of a number of members of different intrinsic data types, then the 

specific internal structure of the object cannot be easily retrieved. This means the full information of an objects 

data type and structure should be passed to functions and subroutines in f90. If an arbitrary variable can be 

passed to functions and subroutines and its internal data structure can be retrieved using an intrinsic function 

such as an extension of SIZE, units can be much more easily handled during computation.  

In this work, we demonstrated a possible way to handle units in Fortran 90 programming, taking 

advantages of OOP features. Currently, programmers are fully responsible to handling and converting units in 

computational and software engineering. Without OOP, it is a formidable task to coherently handle units of 

variables in coding and executing. Three promising ways are (1) adding intrinsic unit annotation features, (2) 

incorporating GNU Units, and (3) developing size/structure detecting functionalities to future standard Fortran 

releases. Before any of these possibilities come to reality, the method presented in this work may provide partial 

solutions to minimize unintended human error, not directly related to compilers and OSs, and calculate correct 

scientific numerical answers of specific physical meanings.  
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No.  Base quantity  Name  Symbol  

1  length  meter  m  

2  mass  kilogram  kg   

3  time  second  s  

4  electric current  ampere  A  

5  thermodynamic temperature  kelvin  K  

6  amount of substance  mole  mol  

7  luminous intensity  candela  cd  

 Table 1. SI base units 

 
No.  Base quantity  Name  Symbol  

1  mass  kilogram  kg   

2  length  meter  m  

3  time  second  s  

4  thermodynamic temperature  kelvin  K  

5  amount of substance  mole  mol  

6  electric current  ampere  A  

7  luminous intensity  candela  cd  

 Table 2. SI base units used in OpenFOAM 

http://octave.sourceforge.net/miscellaneous/function/units.html
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Translational motion   

Displacement  ( / 0, 1, 0, 0, 0, 0, 0 /)  m  

Velocity  ( / 0, 1,-1, 0, 0, 0, 0 /)  m/s  

Acceleration  ( / 0, 1,-2, 0, 0, 0, 0 /)  m/s
2
  

Momentum  ( / 1, 1,-1, 0, 0, 0, 0 /)  kg m/s  

Force  ( / 1, 1,-2, 0, 0, 0, 0 /)  kg m/s
2
  

Moment of force  ( / 1, 2,-2, 0, 0, 0, 0 /)  kg m
2
/s

2
  

Rotational motion    

Displacement  ( / 0, 0, 0, 0, 0, 0, 0 /)  rad [-]  

Angular velocity  ( / 0, 0,-1, 0, 0, 0, 0 /)  rad/s  

Angular acceleration  ( / 0, 0,-2, 0, 0, 0, 0 /)  rad/s
2
  

Momentum  ( / 1, 0,-1, 0, 0, 0, 0 /)  kg rad/s  

Torque  ( / 1, 0,-2, 0, 0, 0, 0 /)  kg rad/s
2
  

Plane angle  ( / 0, 0, 0, 0, 0, 0, 0 /)   

Solid angle  ( / 0, 0, 0, 0, 0, 0, 0 /)   

Mechanics   

Area  ( / 0, 2, 0, 0, 0, 0, 0 /)  m
2
 

Volume  ( / 0, 3, 0, 0, 0, 0, 0 /)  m
3
  

Pressure  ( / 1,-1,-2, 0, 0, 0, 0 /)  kg/m s
2
  

Energy density  ( / 1,-1,-2, 0, 0, 0, 0 /)  kg/m s
2
  

Energy (work)  ( / 1, 2,-2, 0, 0, 0, 0 /)  kg m
2
/s

2
  

Molar energy  ( / 1, 2,-2, 0, 0, 0, 0 /)  kg m
2
/s

2
 mol  

Power (radian flux)  ( / 1, 2,-3, 0, 0, 0, 0 /)  kg m
2
/s

3
  

General transport    

Wave Number  ( / 0,-1, 0, 0, 0, 0, 0 /)  1/m  

Frequency  ( / 0, 0,-1, 0, 0, 0, 0 /)  1/s  

Mass transport  

Mass Density  ( / 1,-3, 0, 0, 0, 0, 0 /)  kg/m
3
  

Specific Volume  ( /-1, 3, 0, 0, 0, 0, 0 /)  m
3
/kg  

Molar Concentration  ( / 0,-3, 0, 0, 1, 0, 0 /)  mol/m
3
  

Diffusivity  ( / 0, 2,-1, 0, 0, 0, 0 /)  m
2
/s  

Mass Fraction  ( / 0, 0, 0, 0, 0, 0, 0 /)   

Catalytic Activity  ( / 0, 0,-1, 0, 1, 0, 0 /)  mol/s  

Catalytic concentration  ( / 0,-3,-1, 0, 1, 0, 0 /)  mol/m
3
 s  

Surface tension  ( / 1, 0,-2, 0, 0, 0, 0 /)  kg/s
2
  

Heat Transfer   

Celsius temperature  ( / 0, 0, 0, 1, 0, 0, 0 /)  K  

Heat flux density  ( / 1, 0,-3, 0, 0, 0, 0 /)  kg/s
3
  

Heat capacity  ( / 1, 2,-2,-1, 0, 0, 0 /)  kg m
2
/s

2
 K  

Specific heat capacity  ( / 0, 2,-2,-1, 0, 0, 0 /)  m
2
/s

2
 K  

Molar Heat capacity  ( / 1, 2,-2,-1,-1, 0, 0 /)  kg m
2
/s

2
 K mol  

Specific energy  ( / 0, 2,-2, 0, 0, 0, 0 /)  m
2
/s

2
  

Thermal conductivity  ( / 1, 1,-3,-1, 0, 0, 0 /)  kg m/s
3
 K  

Momentum Transfer   

Dynamic Viscosity  ( / 1,-1,-1, 0, 0, 0, 0 /)  kg/m s  

Kinematic Viscosity  ( / 0, 2,-1, 0, 0, 0, 0 /)  m
2
/s  

Electro-magnetism    

Electric charge (quantity of electricity)  ( / 0, 0, 1, 0, 0, 1, 0 /)  s A  

Electric charge density  ( / 0,-3, 1, 0, 0, 1, 0 /)  s A/m
3
  

Current Density  ( / 0,-2, 0, 0, 0, 1, 0 /)  A/m
2
  

Magnetic Intensity (Magnetic field strength)  ( / 0,-1, 0, 0, 0, 1, 0 /)  A/m  

Luminous flux  ( / 0, 0, 0, 0, 0, 0, 1 /)  cd  

Luminance  ( / 0,-2, 0, 0, 0, 0, 1 /)  cd/m
2
  

Electric potential difference  ( / 1, 2,-3, 0, 0,-1, 0 /)  kg m
2
/s

3
 A  

Capacitance  ( /-1,-2, 4, 0, 0, 2, 0 /)  s
4
 A

2
/kg m

2
  

Electric resistance  ( / 1, 2,-3, 0, 0,-2, 0 /)  kg m
2
/s

3
 A

2
  

Electric conductance  ( /-1,-2, 3, 0, 0, 2, 0 /)  s
3
 A

2
/m

2
 kg  

Magnetic Flux  ( / 1, 2,-2, 0, 0,-1, 0 /)  kg m
2
/s

2
 A  

Magnetic Flux density  ( / 1, 0,-2, 0, 0,-1, 0 /)  kg/s
2
 A  

Inductance  ( / 1, 2,-2, 0, 0,-2, 0 /)  kg m
2
/s

2
 A

2
  

Electric field strength  ( / 1, 1,-3, 0, 0,-1, 0 /)  kg m/s
3
 A  

Electric flux density  ( / 0,-2, 1, 0, 0, 1, 0 /)  s A/m
2
  

Permittivity  ( / 0,-3, 4, 0, 0, 2, 0 /)  s
4
 A

2
/m

3
 kg  

Permeability  ( / 1, 1,-2, 0, 0,-2, 0 /)  kg m/s
2
 A

2
  

Radiant intensity  ( / 1, 2,-3, 0, 0, 0, 0 /)  kg m
2
/s

3
  

Radiance  ( / 1, 0,-3, 0, 0, 0, 0 /)  kg/s
3
  

Radioactivity   

Becquerel  ( / 0, 0,-1, 0, 0, 0, 0 /)  1/s  

Absorbed dose  ( / 0, 2,-2, 0, 0, 0, 0 /)  m
2
/s

2
  

Absorbed dose rate  ( / 0, 2,-3, 0, 0, 0, 0 /)  m
2
/s

3
  

Dose equivalent  ( / 0, 2,-2, 0, 0, 0, 0 /)  m
2
/s

2
  

Exposure  ( /-1, 0, 1, 0, 0, 1, 0 /)  s A/kg  

Table 3. A list of frequently used physical units 
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Figure 1. The first part of module file: f90units.f90. 
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Figure 2. The second part of module file: f90units.f90. 

 

 
Figure 3. Contents of main program file, dimcheck.f90. 
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Figure 4. Contents of output message by execution of main program of Fig. 3. 

 

 

 
 Figure 5. Module basicop for basic operations with unit annotations.  
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 Figure 6. Module basicop for basic operations with unit annotations.  
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 Figure 7. Output of the main program of Fig. 6. 

 


