
Research Inventy: International Journal of Engineering And Science

Vol.7, Issue 6 (June 2017), PP -11-21

Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com

11

Fortran 90 Programming With Physical Unit Annotations

Albert S. Kim
1,*

, Man Hin Leung
1
, Jung-Hyun Moon

2
, Sung Woo Kim

2

1
Civil and Environmental Engineering, University of Hawaii at Manoa, 2540 Dole Street Holmes 383,

Honolulu, Hawaii 96822, USA
2
Seawater Utilization Plant Research Center (SUPRC), Korea Research Institute of Ships & Ocean

Engineering, 124-32, Simcheungsu-gil, Jukwang-myeon, Goseong-gun, Gangwon-do 219-822, Republic of

Korea

Corresponding author: Albert S. Kim

Abstract: Scientific computation aims to analyze and predict natural and engineered phenomena for human

understanding. Specific quantification of physical variables requires annotations of physical units, either basic,

or derived. State-of-the-art computation uses the object-oriented programming (OOP) features using a number

of processing cores. In translating scientific governing equations to computer programming, developers are still

responsible to use and convert physical units to provide meaningful results. In this paper, we indicate some

incoherency of SI units and propose possible ways to minimize unintended numerical errors. We use standard

Fortran 90 as a programming language and discuss how physical units can be specified and checked during

code compilations and executions.

-- ---------

Date of Submission: 17-02-2017 Date of acceptance: 20-9-2017

--

I. Introduction

Computational research in scientific disciplines often requires computer programming using advanced

languages. Coding refers to translation of mathematical and logical representations using the programming

languages as interfaces between humans and computers. These programming languages can be classified into

compilers and interpreters. Compiling languages such as C/C++ and Fortran (FORmular TRANslator) 77/90

create executable files, which run faster than script languages, but are not usually compatible between different

operating systems (OSs) [1]. Script languages such as python, Java script, R, Perl and tcl/tk interpret and

process written instructions in their kernels sequentially. Advanced script languages such as Mathematica,

MATLAB/Octave, Maple/Maxima, and python, use a wide variety of prebuilt numerical and graphical libraries

for efficient and flexible simulations. A language developed by Google Inc., called “go”, is a new interpreter,

which can compile go-scripts to make executable files. Usage of “go” in the scientific community is limited due

to the lack of prebuilt libraries. These script languages provide a convenient programming environment in which

programmers can test and revise local codes intermittently. Coding statements, checking values, and debugging

lines can be done almost simultaneously in the development stage. However, script languages are often limited

to small, serial applications using a single process unit. For large-scale parallel computation, compiling

languages are still predominantly used in parallel computing communities because compilers provide

deterministic memory handling and invariant data types.

Parallel programming uses an open multi-processing interface (OMP) and a message passing interface

(MPI), which are executed in shared and distributed memory systems, respectively. OMP-MPI hybrid

programming is possible using distributed hardware consisting of multi-core CPUs. Parallel communication

requires robust specification of data types and sizes for cooperative execution of distributed tasks among

computing cores. Changing a data type of a variable using dynamic memory allocation is highly discouraged in

parallel programming although it is considered as an advantage in serial script programming. In this case, global

data should be well structured and assigned for processors to access, modify and share. Even distribution of

tasks among processors, called load balance, is a key for successful parallel computing, which requires data

specification. The conventional compilers such as C and/or F77 for numerical computation are designed for

structured programming using the basic data types (e.g., integers, float or real, double) and structures (e.g.,

scalars, vectors, and matrices). In the past decades, object-oriented programming (OOP) became a critical

programming feature in developing large-scale, high-performance, parallel programs for supercomputers. OOP

developers can customize data structure as a combination of standard types to enhance speedy development and

scalable execution [2].

In computational research, governing equations are solved for physically meaningful variables using

adequate algorithms. Initial and boundary conditions need to be properly set prior to simulation runs. Fixed

parameters are often stored separately and retrieved from customized libraries. While numerical computations

Fortran 90 programming with physical unit annotations

12

consist of a series of basic operations such as addition/subtraction and multiplication/division of variables, their

numerical values have specific physical units (i.e., dimensions). If the variables containing physical units, for

example momenta, forces/torques, and energies in classical or statistical mechanics, are compared and operated,

they should have the same physical units. Use of consistent units can significantly minimize any unintended

errors and noticeably increase the computational reliability. If two variables of different units are multiplied,

then the product should have a new physical meaning, for example, mass times a linear velocity gives the linear

momentum (). A perfectly inelastic collision makes two individual objects one combined body, having

a total mass equal to the sum of two masses. In general, only variables of the same unit can be added or

subtracted. Although computational speed has been enhanced tremendously in the last few decades, handling

units of physical variables still remains in a burgeoning stage, and is still subject to the responsibility of

programmers and end-users. This is primarily because the programs are developed to only compute numerical

and logical values in the mathematical aspect, and more importantly, most programming languages do not have

intrinsic methods to deal with standard physical units for scientific and engineering calculations.

There have been a number of programming languages used for computational purposes for sciences

and engineering. As both hardware and software develop quickly to meet needs and requirements for specific

applications, no single programming language is predominantly used. From early 1970s to the present,

compilers such as C/C++ and Fortran 77/90 have been widely used in communities of computer and software

engineering. Fortran 77 was standardized in 1977, and Fortran 90 includes some advanced feature of C/C++,

which are dynamic memory allocation and free format. Object oriented programming (OOP) features are

officially included in Fortran 003 [3,4]. In general, C/C++ has much wider scope and functionalities than the

latest Fortran, but there are several reasons that Fortran will continue to be used [5]. This is because, in our

opinion, standard Fortran compilers continually incorporate advanced programming features such as OOP and

polymorphism, some applications previously developed using Fortran do not require any updates, and more

importantly legacy libraries [6] built using Fortran in the 1980s and 1990s can be called into C/C++ programs

using cross-compiling. In our opinion, Fortran is a language, in which code lines are very close to pure

mathematical formula. In this paper, we aim to develop a programming method to use and check physical units

during compilation and execution phases using Fortran90 as an OOP compiling language for computational

research and education. Our approach can be, however, readily applied to other OOP-featured languages.

II. Background
Software using physical units

Basic units used in physics and engineering are listed in Table 1 from the National Institute of

Standards and Technology (NIST) [7]. The seven basic quantities are length, mass, time, (electric) current,

temperature, substance number, and luminous intensity. To the best of our knowledge, there are only a limited

number of software programs which incorporate physical units during simulations. OpenFOAM (OF), an open

source software for computational fluid dynamics (CFD), is one of them and it became a popular package

recently for multi-physics simulations in various engineering disciplines [8]. Basic units employed in

OpenFOAM are identical to those in Table 1 with a slightly different sequence. Since OpenFOAM was

developed originally for CFD, quantities for chemical, electrical, and optical phenomena are less frequently

used. Table 3 includes units and their unit arrays of frequently used physical variables in science and

engineering. Physical quantities are classified by their nature.

Related work

To the best of our knowledge, the idea of implementing physical units into numerical computation was

proposed by Petty [9]. A new data type, preal (“Physical REAL”) was introduced as a combination of a REAL

(float) variable and an integer array of seven elements (let us call it a unit array). All derived units such as speed,

acceleration, force, and energy are represented using the seven integers. Three types of operations are

considered: addition/subtraction, multiplication/division, and exponentiation of the real variables. When two

real variables have the same unit(s), addition and subtraction of the two variables requires checking the

identicalness of their unit arrays. For multiplication and division of two real variables, the unit arrays are added

or subtracted since the seven elements represent the power of the basic units. When one real variable is squared,

each of the elements needs to be multiplied by 2. In addition to standard unit handling, unit conversion between

two different units of the same variables was also considered, e.g., feet vs. meters, and meters per second vs.

miles per hour.

Recently, some SI units were thoroughly investigated for periodic phenomena by Mohr and Phillips

[10]. By convention, the angular displacement is measured using degrees or radians. Due to the direct

connection between the angular displacement and the perimeter length, radians are more frequently used in

computational research, while degrees are used mainly for educational purposes. Hertz (Hz) is defined as the

number of cycles per second. Accurate representation of Hz is

Fortran 90 programming with physical unit annotations

13

 (1)

by implicitly defining 1 cycle equal to in radians. A potential confusion occurs when Hz is defined as 1/s,

in which 1 can be considered either in cycles or radians. They concluded that the unit Hz cannot be regarded as

a coherent SI unit, because if cycles are omitted then Hz may be replaced by 1 (rad)/s. In our opinion,

clarification of the angular frequency or angular velocity, often denoted as , can be made using units of either

rev. (revolution)/s or rad/s. If a certain object performs a periodic motion for a long duration, rev./s is an

intuitive, convenient unit. On the other hand, if relative motion of two colliding bodies is of interest, then the

angular displacement must be much smaller than so that rad/s can be a proper unit. The primary

reason that radian is often omitted in the unit handling is because it is defined as the ratio of an arc length

divided by the radius of a circle. To eliminate any confusion and reduce numerical errors, it must be better to, in

our opinion, include radian as a standard unit.

Orchard et al. [11] claimed that the concept of inferring units of measure have been established in the

research literature for a long time, but has not been actively adopted in scientific computing. They extended the

Fortran language which allows automatic verification of units and more importantly developed a technique for

reporting to the user a set of critical variables which should be explicitly annotated with physical units. Once

these features are officially implemented in the Fortran standard or other languages, computational research on

physical phenomena will be in a more robust programming framework. Contrastin et al. [12] further emphasized

the importance of using units in scientific computation because unit annotation can significantly reduce the

debugging effort, and programmers can be more confident in consistency and robustness of their codes. The

next revision of the language (Fortran 2015) is planned for release in mid-2018 [13], to include further

interoperability between Fortran and C, additional parallel features, for interoperability between Fortran and C.

It is proposed that unit annotations are included in Fortran 2015 [14].

III. Programming Methods
3.1. Modules for unit annotation

Fig. 1 shows the first part of the module file containing conventional data types with specific unit

annotations. A type, variable_real (line 2–7), is for a real number with a specific physical unit. In this type, there

are four members: unt(1:7), dim(1:7), str, and val. The first member, unt, is an integer vector consisting of the

seven elements, having the same sequence as shown in Table 2. The second and third members, dim and str,

represent the physical unit in an easily recognizable form. Physically meaningful value is stored in the fourth

member, val. In line 9–14, the data type of an integer variable has the same member structure. In mechanics, a

vector of three components is frequently used in 3D spaces. The data type, variable_vec3, is especially for these

3-element vectors such as position, velocity, momentum and so forth. In comparison to variable_real,

variable_vec3 has three physical values in a vector form. The length of a vector is arbitrarily determined by

users or developers as needed. Dynamic memory allocation provides a flexible use of a customized vector by

assigning the vector length (i.e., the number of elements) after the physical variable is declared. variable_vecn

contains an allocatable vector vecn(:). Because each of the vector elements must have the same unit, the first

three members of unit, dim, and str do not need to change in line 24–26 of Fig. 1. The same approach is used to

define a new data type, variable_matn, for a matrix of arbitrary lengths of rows and columns, i.e., matn(:,:). Fig.

2 shows a function chkunts, which compares units of two variables. The returned results of this function is a

logical value, denoted as ucheck, which is either true (T) of false (F). Two integer arrays are inputted as Aunit

and Bunit, and their difference of each element is calculated as Cunit = Aunit - Bunit. If all the seven elements

of Cunit are zero, then two variables associated to Aunit and Bunit have the same unit.

Fig. 3 is an example main program that shows how to assign a value and unit of a real, scalar variable.

Initially, myMass is set as 10 kg with the unit array of (/1,0,0,0,0,0,0/) in lines 11 and 12, and -, -, and

-directional components of myVelocity are set as 1.0, 2.0 and 3.0 m/s, respectively, with the unit array of

(/0,1,-1,0,0,0,0/). The numerical values of myMass and myVelocity are printed to the screen with specific

formats in lines 18–24. Units of these variables are compared and inequality of these units is presented using a

logical value false, F, in lines 26–31. A scalar myMass and a 3D vector myVelocity are multiplied to calculate

myLinearMomentum as a 3D vector. The unit of myLinearMomentum is derived by adding myMass%unt and

myVelocity%unt element by element implicitly. The final element-values and unit of myLinearMomentum are

printed to the screen. Specific outcomes by executing the main program of Fig. 3 are shown in Fig. 4.

3.2. Modules for basic operations

Fig. 5 shows another module containing exemplary mathematical operations with unit annotations for addition

of two real scalar variables, plusReal, and dot-product of two vectors of arbitrary length, dot_vectors. Usage of

these operators is shown in a main program of Fig. 6. In the main program, basic_app.f90,

 Scalar values of myMass [kg] and myTime [s] are set to be 10.0 and 5.0 in lines 10 and 14, respectively.

Fortran 90 programming with physical unit annotations

14

 In line 19, these two heterogeneous variables are added using the customized operator (.plusReal.), and, as

expected, the operation is failed to calculate mySum1.

 In line 27, two scalar variables having both a dimension of time time dimension are added and its sum,

mySum2, is properly calculated.

 In lines 34 – 39, myVelocity1 is set to be (1.0, 2.0, 3.0) [m/s] and the member myVelocity2%vec3 is set to

be 2.0*myVelocity1%vec3.

 In line 51, units of myVelocity1 and myVelocity2 are checked.

 In line 54, the two velocities are multiplied using customized operator (.dot.) and the magnitude is

calculated as mySpeedSq%val = . mySpeedSq has the unit of

speed squared, which are calculated as the sum of unit-arrays of myVelocity1 and myVelocity2 in line 55.

Specific outputs to the screen are captured and shown in Fig. 7. More functions can be developed and

included in basicop module. Subtraction of real B from real A can be easily calculated by replacing B by -B and

adding -B to A in function plusReal in Fig. 5. Note that lengths of two input vectors A and B to dot_vectors are

not specified. As long as the sizes of vectors A and B vectors are the same, .dot. operation will proceed. One can

extend dot_vectors to dot_matrices for multiplication of two matrices, having the first matrix’s column number

equal to the second matrix’s row number. But, f90 already has an intrinsic function of matmul, requiring the

same structural condition for two multiplied matrices. In this case, only units can be compared and/or added.

Exponentiation operation can be done similarly to multiplication. The unit-array needs to be multiplied by the

exponent power.

If the future Fortran release has a functionality that data type and its member structure of an input

variable can be detected inside functions and subroutines, then the current approach of having three additional

members, %unt, %dim, and %str, can be much more efficient. To the best of our knowledge, this is not possible

in general. Pointers can be used for the same purpose, but it still requires pointers be declared pointers with

specific data types (either basic or customized).

IV. Concluding Remarks
Fortran is a programming language, originally developed for numerical computations. Recent releases

of Fortran compilers include OOP features for advanced programming. A physical variable can be treated as an

object having at least two members, i.e., the inter array of seven elements of unit exponents and a data member

(of scalar, vector, or matrix). Using the unit-array, developers can easily check the consistency of physical units

during a series of arithmetic operations. For addition and subtraction between two physical quantities, the

identicalness of two quantities needs to be confirmed. For multiplication and division of two quantities, the

resulting quantity should have a unit as an addition and subtraction of two unit-arrays, respectively.

We believe that the unit annotation will be included in advanced programming languages as such

annotation is highly needed for coherent and robust computation. As described above, the next release of

Fortran 2015 in 2018 or a later version may have intrinsic ways to include the unit annotations by declaring

variables or using functions (or subroutines). Conversion between two units of the same variables is also

suggested such as between meters [m] and feet [ft], meter per second [m/s] and miles per hour [mile/h], and

pounds per squared inch [psi] and Pascal [Pa]. If these unit-handling features are included in the future version

of Fortran, it must would be the first compiling language, which can that could check and convert units of

physical variables. There are seven basic units from which conventional units are derived. In our opinion,

adding radian as the eighth basic unit may enhance coherency of the unit annotations, especially for applications

in rotational dynamics and wave mechanics.

GNU released version 2.13 of a software package, Units, which can convert quantities expressed in one

measurement system to its equivalent in another system [15]. GNU Units has an annotated, extendable database

of more than two hundred prebuilt measurement units. In a Unix/Linux terminal, executing ’units’ in a

command line will initiate its usage. GNU Octave has an interface to GNU Units [16], which allows

programmers to declare both value and unit of a quantity. The Octave syntaxes with Units are very similar to

OOP programming in C++. The main object and its members are separated by a dot (.), while the separator of

Fortran is %. GNU gfortran uses % only and Intel Fortran (ifort) allows the use of either dot (.) or %. GNU

Units is written in C and easily compiled using gcc. There are only five .c files with a total number of lines of

about nine thousand. We believe that incorporating GNU gfortran and Units can be the first consistent step to

handle unit annotations in Fortran programming. This may include forceful declaration of units even for

numbers in pure mathematics.

One of biggest differences between f77 and f90 is the dynamic memory allocation. f77 has, however,

implicit dynamic memory allocation if an array size is small. One can pass a matrix name and its sizes as

arguments of a subroutine while the matrix sizes are not predetermined in the subroutine. It is also possible to

pass a 2D matrix to a subroutine and receive it as a packed 1D array in the subroutine. These sophisticated

Fortran 90 programming with physical unit annotations

15

features of f77 are clearly included in f90 as standard functionalities. In f90, if a variable is declared an intrinsic

data type such as a real array, its size can be measured inside the subroutine. If developers define new

customized data types as objects consisting of a number of members of different intrinsic data types, then the

specific internal structure of the object cannot be easily retrieved. This means the full information of an objects

data type and structure should be passed to functions and subroutines in f90. If an arbitrary variable can be

passed to functions and subroutines and its internal data structure can be retrieved using an intrinsic function

such as an extension of SIZE, units can be much more easily handled during computation.

In this work, we demonstrated a possible way to handle units in Fortran 90 programming, taking

advantages of OOP features. Currently, programmers are fully responsible to handling and converting units in

computational and software engineering. Without OOP, it is a formidable task to coherently handle units of

variables in coding and executing. Three promising ways are (1) adding intrinsic unit annotation features, (2)

incorporating GNU Units, and (3) developing size/structure detecting functionalities to future standard Fortran

releases. Before any of these possibilities come to reality, the method presented in this work may provide partial

solutions to minimize unintended human error, not directly related to compilers and OSs, and calculate correct

scientific numerical answers of specific physical meanings.

Acknowledgement
This work was financially supported by the National R&D project of “Development of 1MW Ocean Thermal

Energy Conversion Plant for Demonstration” from the Korean Ministry of Oceans and Fisheries.

References

[1] Matthew G. Knepley. Programming languages for scientific computing. Encyclopedia of Applied and Computational Mathematics,

2012, September 2012.
[2] Damian Rouson, Jim Xia, and Xiaofeng Xu. Scientific Software Design: The Object-Oriented Way. Cambridge University Press,

2011.
[3] Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Szymanski. Expressing object-oriented concepts in Fortran 90. ACM

SIGPLAN Fortran Forum, 16(1):13–18, Apr 1997.

[4] Damian W.I. Rouson, Jim Xia, and Xiaofeng Xu. Object construction and destruction design patterns in Fortran 2003. Procedia
Computer Science, 1(1):1495–1504, May 2010.

[5] John R. Cary, Svetlana G. Shasharina, Julian C. Cummings, John V.W. Reynders, and Paul J. Hinker. Comparison of C++ and
Fortran 90 for object-oriented scientific programming. Computer Physics Communications, 105(1):20–36, Sep 1997.

[6] http://www.netlib.org/.

[7] http://physics.nist.gov/cuu/units/units.html.
[8] https://openfoam.org and https://openfoam.com.

[9] Grant W Petty. Automated computation and consistency checking of physical dimensions and units in scientific programs.
Software: Practice and Experience, 31(11):1067–1076, 2001.

[10] Peter J Mohr and William D Phillips. Dimensionless units in the SI. Metrologia, 52(1):40–47, Dec 2014.

[11] Dominic Orchard, Andrew Rice, and Oleg Oshmyan. Evolving Fortran types with inferred units-of-measure. Journal of
Computational Science, 9:156–162, Jul 2015.

[12] Mistral Contrastin, Andrew Rice, Matthew Danish, and Dominic Orchard. Units-of-measure correctness in Fortran programs.
Computing in Science & Engineering, 18(1):102–107, Jan 2016.

[13] Steve Lionel. Doctor Fortran in "One Door Closes",

https://software.intel.com/en-us/blogs/2015/09/04/doctor-fortran-in-one-door-closes.
[14] W. V. Snyder. ISO/IEC JTC1/SC22/WG5 N1969. Technical report, International Organization for Standardization, 2013.

[15] GNU Units. https://www.gnu.org/software/units/.

[16] Octave interface to GNU Units. http://octave.sourceforge.net/miscellaneous/function/units.html.

No. Base quantity Name Symbol

1 length meter m

2 mass kilogram kg

3 time second s

4 electric current ampere A

5 thermodynamic temperature kelvin K

6 amount of substance mole mol

7 luminous intensity candela cd

 Table 1. SI base units

No. Base quantity Name Symbol

1 mass kilogram kg

2 length meter m

3 time second s

4 thermodynamic temperature kelvin K

5 amount of substance mole mol

6 electric current ampere A

7 luminous intensity candela cd

 Table 2. SI base units used in OpenFOAM

http://octave.sourceforge.net/miscellaneous/function/units.html

Fortran 90 programming with physical unit annotations

16

Translational motion

Displacement (/ 0, 1, 0, 0, 0, 0, 0 /) m

Velocity (/ 0, 1,-1, 0, 0, 0, 0 /) m/s

Acceleration (/ 0, 1,-2, 0, 0, 0, 0 /) m/s
2

Momentum (/ 1, 1,-1, 0, 0, 0, 0 /) kg m/s

Force (/ 1, 1,-2, 0, 0, 0, 0 /) kg m/s
2

Moment of force (/ 1, 2,-2, 0, 0, 0, 0 /) kg m
2
/s

2

Rotational motion

Displacement (/ 0, 0, 0, 0, 0, 0, 0 /) rad [-]

Angular velocity (/ 0, 0,-1, 0, 0, 0, 0 /) rad/s

Angular acceleration (/ 0, 0,-2, 0, 0, 0, 0 /) rad/s
2

Momentum (/ 1, 0,-1, 0, 0, 0, 0 /) kg rad/s

Torque (/ 1, 0,-2, 0, 0, 0, 0 /) kg rad/s
2

Plane angle (/ 0, 0, 0, 0, 0, 0, 0 /)

Solid angle (/ 0, 0, 0, 0, 0, 0, 0 /)

Mechanics

Area (/ 0, 2, 0, 0, 0, 0, 0 /) m
2

Volume (/ 0, 3, 0, 0, 0, 0, 0 /) m
3

Pressure (/ 1,-1,-2, 0, 0, 0, 0 /) kg/m s
2

Energy density (/ 1,-1,-2, 0, 0, 0, 0 /) kg/m s
2

Energy (work) (/ 1, 2,-2, 0, 0, 0, 0 /) kg m
2
/s

2

Molar energy (/ 1, 2,-2, 0, 0, 0, 0 /) kg m
2
/s

2
 mol

Power (radian flux) (/ 1, 2,-3, 0, 0, 0, 0 /) kg m
2
/s

3

General transport

Wave Number (/ 0,-1, 0, 0, 0, 0, 0 /) 1/m

Frequency (/ 0, 0,-1, 0, 0, 0, 0 /) 1/s

Mass transport

Mass Density (/ 1,-3, 0, 0, 0, 0, 0 /) kg/m
3

Specific Volume (/-1, 3, 0, 0, 0, 0, 0 /) m
3
/kg

Molar Concentration (/ 0,-3, 0, 0, 1, 0, 0 /) mol/m
3

Diffusivity (/ 0, 2,-1, 0, 0, 0, 0 /) m
2
/s

Mass Fraction (/ 0, 0, 0, 0, 0, 0, 0 /)

Catalytic Activity (/ 0, 0,-1, 0, 1, 0, 0 /) mol/s

Catalytic concentration (/ 0,-3,-1, 0, 1, 0, 0 /) mol/m
3
 s

Surface tension (/ 1, 0,-2, 0, 0, 0, 0 /) kg/s
2

Heat Transfer

Celsius temperature (/ 0, 0, 0, 1, 0, 0, 0 /) K

Heat flux density (/ 1, 0,-3, 0, 0, 0, 0 /) kg/s
3

Heat capacity (/ 1, 2,-2,-1, 0, 0, 0 /) kg m
2
/s

2
 K

Specific heat capacity (/ 0, 2,-2,-1, 0, 0, 0 /) m
2
/s

2
 K

Molar Heat capacity (/ 1, 2,-2,-1,-1, 0, 0 /) kg m
2
/s

2
 K mol

Specific energy (/ 0, 2,-2, 0, 0, 0, 0 /) m
2
/s

2

Thermal conductivity (/ 1, 1,-3,-1, 0, 0, 0 /) kg m/s
3
 K

Momentum Transfer

Dynamic Viscosity (/ 1,-1,-1, 0, 0, 0, 0 /) kg/m s

Kinematic Viscosity (/ 0, 2,-1, 0, 0, 0, 0 /) m
2
/s

Electro-magnetism

Electric charge (quantity of electricity) (/ 0, 0, 1, 0, 0, 1, 0 /) s A

Electric charge density (/ 0,-3, 1, 0, 0, 1, 0 /) s A/m
3

Current Density (/ 0,-2, 0, 0, 0, 1, 0 /) A/m
2

Magnetic Intensity (Magnetic field strength) (/ 0,-1, 0, 0, 0, 1, 0 /) A/m

Luminous flux (/ 0, 0, 0, 0, 0, 0, 1 /) cd

Luminance (/ 0,-2, 0, 0, 0, 0, 1 /) cd/m
2

Electric potential difference (/ 1, 2,-3, 0, 0,-1, 0 /) kg m
2
/s

3
 A

Capacitance (/-1,-2, 4, 0, 0, 2, 0 /) s
4
 A

2
/kg m

2

Electric resistance (/ 1, 2,-3, 0, 0,-2, 0 /) kg m
2
/s

3
 A

2

Electric conductance (/-1,-2, 3, 0, 0, 2, 0 /) s
3
 A

2
/m

2
 kg

Magnetic Flux (/ 1, 2,-2, 0, 0,-1, 0 /) kg m
2
/s

2
 A

Magnetic Flux density (/ 1, 0,-2, 0, 0,-1, 0 /) kg/s
2
 A

Inductance (/ 1, 2,-2, 0, 0,-2, 0 /) kg m
2
/s

2
 A

2

Electric field strength (/ 1, 1,-3, 0, 0,-1, 0 /) kg m/s
3
 A

Electric flux density (/ 0,-2, 1, 0, 0, 1, 0 /) s A/m
2

Permittivity (/ 0,-3, 4, 0, 0, 2, 0 /) s
4
 A

2
/m

3
 kg

Permeability (/ 1, 1,-2, 0, 0,-2, 0 /) kg m/s
2
 A

2

Radiant intensity (/ 1, 2,-3, 0, 0, 0, 0 /) kg m
2
/s

3

Radiance (/ 1, 0,-3, 0, 0, 0, 0 /) kg/s
3

Radioactivity

Becquerel (/ 0, 0,-1, 0, 0, 0, 0 /) 1/s

Absorbed dose (/ 0, 2,-2, 0, 0, 0, 0 /) m
2
/s

2

Absorbed dose rate (/ 0, 2,-3, 0, 0, 0, 0 /) m
2
/s

3

Dose equivalent (/ 0, 2,-2, 0, 0, 0, 0 /) m
2
/s

2

Exposure (/-1, 0, 1, 0, 0, 1, 0 /) s A/kg

Table 3. A list of frequently used physical units

Fortran 90 programming with physical unit annotations

17

Figure 1. The first part of module file: f90units.f90.

Fortran 90 programming with physical unit annotations

18

Figure 2. The second part of module file: f90units.f90.

Figure 3. Contents of main program file, dimcheck.f90.

Fortran 90 programming with physical unit annotations

19

Figure 4. Contents of output message by execution of main program of Fig. 3.

 Figure 5. Module basicop for basic operations with unit annotations.

Fortran 90 programming with physical unit annotations

20

 Figure 6. Module basicop for basic operations with unit annotations.

Fortran 90 programming with physical unit annotations

21

 Figure 7. Output of the main program of Fig. 6.

