Higher Separation Axioms via Semi*-open sets

S. Pious Missier¹, A. Robert²

¹ Department of Mathematics, V.O.Chidambaram College, Thoothukudi, India-628008. ²Department of Mathematics, Aditanar College, Tiruchendur, India-628216.

Abstract: The purpose of this paper is to introduce new separation axioms semi*-regular, semi*-normal, s*regular, s**-normal using semi*-open sets and investigate their properties. We also study the relationships among themselves and with known axioms regular, normal, semi-regular and semi-normal. Mathematics Subject Classification 2010: 54D10, 54D15 Keywords and phrases: s**-normal, s*-regular, semi*-normal, semi*-regular.

I. INTRODUCTION

Separation axioms are useful in classifying topological spaces. Maheswari and Prasad [8, 9] introduced the notion of s-regular and s-normal spaces using semi-open sets. Dorsett [3, 4] introduced the concept of semi-regular and semi-normal spaces and investigate their properties.

In this paper, we define semi*-regular, semi*-normal, s*-regular and s**-normal spaces using semi*open sets and investigate their basic properties. We further study the relationships among themselves and with known axioms regular, normal, semi-regular and semi-normal.

II. PRELIMINARIES

Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are

assumed, unless explicitly stated. If A is a subset of the space (X, τ) , Cl(A)

and Int(A) respectively denote the closure and the interior of A in X.

Definition 2.1[7]: A subset A of a topological space (X, τ) is called

(i) generalized closed (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ii) generalized open (briefly g-open) if $X \setminus A$ is g-closed in X.

Definition 2.2: Let A be a subset of X. Then

- (i) generalized closure[5] of A is defined as the intersection of all g-closed sets containing A and is denoted by *Cl**(A).
- (ii) generalized interior of A is defined as the union of all g-open subsets of A and is denoted by *Int**(A).

Definition 2.3: A subset A of a topological space (X, τ) is called

(i) semi-open [6] (resp. semi*-open[12]) if $A \subseteq Cl(Int(A))$ (resp. $A \subseteq Cl^*(Int(A))$.

(ii) semi-closed [1] (resp. semi*-closed[13]) if $Int(Cl(A)) \subseteq A$ (resp. $Int*(Cl(A)) \subseteq A$).

The class of all semi*-open (resp. semi*-closed) sets is denoted by $S^*O(X, \tau)$ (resp. $S^*C(X, \tau)$).

The semi*-interior of A is defined as the union of all semi*-open sets of X contained in A. It is denoted by s*Int(A). The semi*-closure of A is defined as the intersection of all semi*-closed sets in X containing A. It is denoted by s*Cl(A).

Theorem 2.4[13]: Let $A \subseteq X$ and let $x \in X$. Then $x \in s^*Cl(A)$ if and only if every semi*-open set in X containing x intersects A.

Theorem 2.5[12]: (i) Every open set is semi*-open.

(ii) Every semi*-open set is semi-open.

Definition 2.6: A space X is said to be $T_1[17]$ if for every pair of distinct points x and y in X, there is an open set U containing x but not y and an open set V containing y but not x.

Definition 2.7: A space X is R₀ [16] if every open set contains the closure of each of its points.

Theorem 2.8: (i) X is R_0 if and only if for every closed set F, $Cl({x}) \cap F=\phi$, for all $x \in X \setminus F$.

(ii) X is semi*-R₀ if and only if for every semi*-closed set F, $s*Cl({x}) \cap F=\phi$, for all $x \in X \setminus F$.

Definition 2.9: A topological space X is said to be

(i) regular if for every pair consisting of a point x and a closed set B not containing x, there are disjoint open sets U and V in X containing x and B respectively.[17]

- (ii) s-regular if for every pair consisting of a point x and a closed set B not containing x, there are disjoint semi-open sets U and V in X containing x and B respectively.[8]
- (iii) semi-regular if for every pair consisting of a point x and a semi-closed set B not containing x, there are disjoint semi-open sets U and V in X containing x and B respectively.[3]

Definition 2.10: A topological space X is said to be

(i) normal if for every pair of disjoint closed sets A and B in X, there are disjoint open sets U and V in X containing A and B respectively.[17]

(ii) s-normal if for every pair of disjoint closed sets A and B in X, there are disjoint semi-open sets U and V in X containing A and B respectively.[9]

(iii) semi-normal if for every pair of disjoint semi-closed sets A and B in X, there are disjoint semi-open sets U and V in X containing A and B respectively.[4]

Definition 2.11: A function $f: X \rightarrow Y$ is said to be

- (i) closed [17] if f(V) is closed in Y for every closed set V in X.
- (ii) semi*-continuous [14] if $f^{-1}(V)$ is semi*-open in X for every open set V in Y.
- (iii) semi*-irresolute [15] if $f^{-1}(V)$ is semi*-open in X for every semi*-open set V in Y.
- (iv) contra-semi*-irresolute [15] if $f^{-1}(V)$ is semi*-closed in X for every semi*-open set V in Y.
- (v) semi*-open [14] if f(V) is semi*-open in Y for every open set V in X.
- (vi) pre-semi*-open [14] if f(V) is semi*-open in Y for every semi*-open set V in X
- (vii) contra-pre-semi*-open [14] if f(V) is semi*-closed in Y for every semi*-open set V in X.
- (viii) pre-semi*-closed [14] if f(V) is semi*-closed in Y for every semi*-closed set V in X.
- **Lemma 2.12**[10]: If A and B are subsets of X such that $A \cap B = \phi$ and A is semi*-open in X, then $A \cap s * Cl(B) = \phi$.

Theorem 2.13[15]: A function $f: X \rightarrow Y$ is semi*-irresolute if $f^{-1}(F)$ is semi*-closed in X for every semi*closed set F in Y.

III. REGULAR SPACES ASSOCIATED WITH SEMI*-OPEN SETS.

In this section we introduce the concepts of semi*-regular and s*-regular spaces. Also we investigate their basic properties and study their relationship with already existing concepts.

Definition 3.1: A space X is said to be *semi*-regular* if for every pair consisting of a point x and a semi*-closed set B not containing x, there are disjoint semi*-open sets U and V in X containing x and B respectively.

Theorem 3.2: In a topological space X, the following are equivalent:

- (i) X is semi*-regular.
- (ii) For every $x \in X$ and every semi*-open set U containing x, there exists a semi*-open set V containing x such that $s*Cl(V) \subseteq U$.
- (iii) For every set A and a semi*-open set B such that $A \cap B \neq \phi$, there exists a semi*open set U such that $A \cap U \neq \phi$ and $s^*Cl(U) \subseteq B$.
- (iv) For every non-empty set A and semi*-closed set B such that $A \cap B = \phi$, there exist disjoint semi*-open sets U and V such that $A \cap U \neq \phi$ and $B \subseteq V$.

Proof: (i) \Rightarrow (ii): Let U be a semi*-open set containing x. Then B=X\U is a semi*-closed not containing x. Since X is semi*-regular, there exist disjoint semi*-open sets V and W containing x and B respectively. If y \in B, W is a semi*-open set containing y that does not intersect V and hence by Theorem 2.4, y cannot belong to *s***Cl*(V). Therefore *s***Cl*(V) is disjoint from B. Hence *s***Cl*(V) \subseteq U

(ii) \Rightarrow (iii): Let A \cap B $\neq \phi$ and B be semi*-open. Let x \in A \cap B. Then by assumption, there exists a semi*-open set U containing x such that *s***Cl*(U) \subseteq B. Since x \in A, A \cap U $\neq \phi$. This proves (iii).

(iii) \Rightarrow (iv): Suppose A \cap B= ϕ , where A is non-empty and B is semi*-closed. Then X\B is semi*-open and A \cap (X\B) $\neq \phi$. By (iii), there exists a semi*-open set U such that A \cap U $\neq \phi$, and U \subseteq s*Cl(U) \subseteq X\B. Put V=X\s*Cl(U). Hence V is a semi*-open set containing B such that U \cap V=U \cap (X\s*Cl(U)) \subseteq U \cap (X\U)= ϕ . This proves (iv).

(iv)⇒(i). Let B be semi*-closed and $x \notin B$. Take A={x}. Then A∩B= ϕ . By (iv), there exist disjoint semi*-open sets U and V such that U∩A≠ ϕ and B⊆V. Since U∩A≠ ϕ , x ∈U. This proves that X is semi*-regular.

Theorem 3.3: Let X be a semi*-regular space.

- (i) Every semi*-open set in X is a union of semi*-closed sets.
- (ii) Every semi*-closed set in X is an intersection of semi*-open sets.

Proof: (i) Suppose X is s*-regular. Let G be a semi*-open set and $x \in G$. Then $F=X\setminus G$ is semi*-closed and $x \notin F$. Since X is semi*-regular, there exist disjoint semi*-open sets U_x and V in X such that $x \in U_x$ and $F \subseteq V$. Since $U_x \cap F \subseteq U_x \cap V = \phi$, we have $U_x \subseteq X \setminus F = G$. Take $V_x = s * Cl(U_x)$. Then V_x is semi*-closed and by Lemma 2.12, $V_x \cap V = \phi$. Now $F \subseteq V$ implies that $V_x \cap F \subseteq V_x \cap V = \phi$. It follows that $x \in V_x \subseteq X \setminus F = G$. This proves that $G = \bigcup \{V_x : x \in G\}$. Thus G is a union of semi*-closed sets.

(ii) Follows from (i) and set theoretic properties.

Theorem 3.4: If f is a semi*-irresolute and pre-semi*-closed injection of a topological space X into a semi*-regular space Y, then X is semi*-regular.

Proof: Let $x \in X$ and A be a semi*-closed set in X not containing x. Since *f* is pre-semi*-closed, *f*(A) is a semi*closed set in Y not containing *f*(x). Since Y is semi*-regular, there exist disjoint semi*-open sets V₁ and V₂ in Y such that $f(x) \in V_1$ and $f(A) \subseteq V_2$. Since *f* is semi*-irresolute, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint semi*-open sets in X containing x and A respectively. Hence X is semi*-regular.

Theorem 3.5: If f is a semi*-continuous and closed injection of a topological space X into a regular space Y and if every semi*-closed set in X is closed, then X is semi*-regular.

Proof: Let $x \in X$ and A be a semi*-closed set in X not containing x. Then by assumption, A is closed in X. Since *f* is closed, *f*(A) is a closed set in Y not containing *f*(x). Since Y is regular, there exist disjoint open sets V_1 and V_2 in Y such that $f(x) \in V_1$ and $f(A) \subseteq V_2$. Since *f* is semi*-continuous, $f^1(V_1)$ and $f^1(V_2)$ are disjoint semi*-open sets in X containing x and A respectively. Hence X is semi*-regular.

Theorem 3.6: If $f: X \rightarrow Y$ is a semi*-irresolute bijection which is pre-semi*-open and X is semi*-regular. Then Y is also semi*-regular.

Proof: Let $f: X \to Y$ be a semi*-irresolute bijection which is semi*-open and X be semi*-regular. Let $y \in Y$ and B be a semi*-closed set in Y not containing y. Since f is semi*-irresolute, by Theorem 2.13 $f^{-1}(B)$ is a semi*-closed set in X not containing $f^{-1}(y)$. Since X is semi*-regular, there exist disjoint semi*-open sets U₁ and U₂ containing $f^{-1}(y)$ and $f^{-1}(B)$ respectively. Since f is pre-semi*-open, $f(U_1)$ and $f(U_2)$ are disjoint semi*-open sets in Y containing y and B respectively. Hence Y is semi*-regular.

Theorem 3.7: If f is a continuous semi*-open bijection of a regular space X into a space Y and if every semi*closed set in Y is closed, then Y is semi*-regular.

Proof: Let $y \in Y$ and B be a semi*-closed set in Y not containing y. Then by assumption, B is closed in Y. Since *f* is a continuous bijection, $f^{-1}(B)$ is a closed set in X not containing the point $f^{-1}(y)$. Since X is regular, there exist disjoint open sets U_1 and U_2 in X such that $f^{-1}(y) \in U_1$ and $f^{-1}(B) \subseteq U_2$. Since *f* is semi*-open, $f(U_1)$ and $f(U_2)$ are disjoint semi*-open sets in Y containing x and B respectively. Hence Y is semi*-regular.

Theorem 3.8: If X is semi*-regular, then it is semi*-R₀.

Proof: Suppose X is semi*-regular. Let U be a semi*-open set and $x \in U$. Take $F = X \setminus U$. Then F is a semi*closed set not containing x. By semi*-regularity of X, there are disjoint semi*-open sets V and W such that $x \in V$, $F \subseteq W$. If $y \in F$, then W is a semi*-open set containing y that does not intersect V. Therefore $y \notin s^*Cl(\{V\})$ $\Rightarrow y \notin s^*Cl(\{x\})$. That is $s^*Cl(\{x\}) \cap F = \phi$ and hence $s^*Cl(\{x\}) \subseteq X \setminus F = U$. Hence X is semi*-R₀.

Definition 3.9: A space X is said to be *s**-*regular* if for every pair consisting of a point x and a closed set B not containing x, there are disjoint semi*-open sets U and V in X containing x and B respectively.

Theorem 3.10: (i) Every regular space is s*-regular.

(ii) Every s*-regular space is s-regular.

Proof: Suppose X is regular. Let F be a closed set and $x \notin F$. Since X is regular, there exist disjoint open sets U and V containing x and F respectively. Then by Theorem 2.5(i) U and V are semi*-open in X. This implies that X is s*-regular. This proves (i).

Suppose X is s*-regular. Let F be a closed set and $x \notin F$. Since X is s*-regular, there exist disjoint semi*-open sets U and V containing x and F respectively. Then by Theorem 2.5(ii) U and V are semi-open in X. This implies that X is s-regular. This proves (ii).

Remark 3.11: The reverse implications of the statements in the above theorem are not true as shown in the following examples.

 $\{a, b, c\}, X\}$. Clearly (X, τ) is s*-regular but not regular.

Example 3.13: Let X={a, b, c, d} with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ Clearly (X, τ) is s-regular not s*-regular.

Theorem 3.14: For a topological space X, the following are equivalent:

(i) X is s*-regular.

(ii) For every $x \in X$ and every open set U containing x, there exists a semi*-open set V containing x such that $s^*Cl(V) \subseteq U$.

(iii) For every set A and an open set B such that $A \cap B \neq \phi$, there exists a semi*-open set U such that $A \cap U \neq \phi$ and $s^*Cl(U) \subseteq B$.

(iv) For every non-empty set A and closed set B such that $A \cap B = \phi$, there exist disjoint semi*-open sets U and V such that $A \cap U \neq \phi$ and $B \subseteq V$.

Proof: (i) \Rightarrow (ii): Let U be an open set containing x. Then B=X\U is a closed set not containing x. Since X is s*-regular, there exist disjoint semi*-open sets V and W containing x and B respectively. If y \in B, W is a semi*-open set containing y that does not intersect V and hence by Theorem 2.4, y cannot belong to s*Cl(V). Therefore s*Cl(V) is disjoint from B. Hence $s*Cl(V)\subseteq U$.

(ii) \Rightarrow (iii): Let A \cap B $\neq \phi$ and B be open. Let x \in A \cap B. Then by assumption, there exists a semi*-open set U containing x such that *s***Cl*(U) \subseteq B. Since x \in A, A \cap U $\neq \phi$. This proves (iii).

(iii) \Rightarrow (iv): Suppose A \cap B= ϕ , where A is non-empty and B is closed. Then X\B is open and A \cap (X\B) $\neq \phi$. By (iii), there exists a semi*-open set U such that A \cap U $\neq \phi$, and U \subseteq s*Cl(U) \subseteq X\B. Put V=X\s*Cl(U). Hence V is a semi*-open set containing B such that U \cap V=U \cap (X\s*Cl(U)) \subseteq U \cap (X\U)= ϕ . This proves (iv).

 $(iv) \Rightarrow (i)$. Let B be closed and $x \notin B$. Take $A = \{x\}$. Then $A \cap B = \phi$. By (iv), there exist disjoint semi*-open sets U and V such that $U \cap A \neq \phi$ and $B \subseteq V$. Since $U \cap A \neq \phi$, $x \in U$. This proves that X is s*-regular.

Theorem 3.15: If X is a regular T_1 space, then for every pair of distinct points of X there exist semi*-open sets containing them whose semi*-closures are disjoint.

Proof: Let x, y be two distinct points in the regular T_1 space X. Since X is T_1 , {y} is closed. Since X is regular, there exist disjoint open sets U_1 and U_2 containing x and {y} respectively. By Theorem 3.9(i), X is s*-regular and hence by Theorem 3.13, there exist semi*-open sets V_1 and V_2 containing x, y such that $s*Cl(V_1)\subseteq U_1$ and $s*Cl(V_2)\subseteq U_2$. Since U_1 and U_2 are disjoint, $s*Cl(V_1)$ and $s*Cl(V_2)$ are disjoint. This proves the theorem.

Theorem 3.16: Every semi*-regular space is s*-regular.

Proof: Suppose X is semi*-regular. Let F be a closed set and $x \notin F$. Then by Theorem (i), F is semi*-closed in X. Since X is semi*-regular, there exist disjoint semi*-open sets U and V containing x and F respectively. This implies that X is s*-regular.

Theorem 3.17: (i) Every s*-regular T₁ space is semi*-T₂.

(ii) Every semi*-regular semi*- T_1 space is semi*- T_2 .

Proof: Suppose X is s*-regular and T₁. Let x and y be two distinct points in X. Since X is T₁, {x} is closed and $y \notin \{x\}$. Since X is s*-regular, there exist disjoint semi*-open sets U and V in X containing {x} and y respectively. It follows that X is semi*-T₂. This proves (i).

Suppose X is semi*-regular and semi*-T₁. Let x and y be two distinct points in X. Since X is semi*-T₁, {x} is semi*-closed and $y \notin \{x\}$. Since X is semi*-regular, there exist disjoint semi*-open sets U and V in X containing {x} and y respectively. It follows that X is semi*-T₂. This proves (ii).

Theorem 3.18: Let X be an s*-regular space.

i) Every open set in X is a union of semi*-closed sets.

ii) Every closed set in X is an intersection of semi*-open sets.

Proof: (i) Suppose X is s*-regular. Let G be an open set and $x \in G$. Then $F=X\setminus G$ is closed and

 $x \notin F$. Since X is s*-regular, there exist disjoint semi*-open sets U_x and U in X such that $x \in U_x$ and $F \subseteq U$. Since $U_x \cap F \subseteq U_x \cap U = \phi$, we have $U_x \subseteq X \setminus F = G$. Take $V_x = s * Cl(U_x)$. Then V_x is semi*-closed. Now $F \subseteq U$ implies that $V_x \cap F \subseteq V_x \cap U = \phi$. It follows that $x \in V_x \subseteq X \setminus F = G$. This proves that $G = \bigcup \{V_x : x \in G\}$. Thus G is a union of semi*-closed sets.

(ii) Follows from (i) and set theoretic properties.

IV. NORMAL SPACES ASSOCIATED WITH SEMI*-OPEN SETS.

In this section we introduce variants of normal spaces namely semi*-normal spaces and s**-normal spaces and investigate their basic properties. We also give characterizations for these spaces.

Definition 4.1: A space X is said to be *semi*-normal* if for every pair of disjoint semi*-closed sets A and B in X, there are disjoint semi*-open sets U and V in X containing A and B respectively.

Theorem 4.2: In a topological space X, the following are equivalent:

- (i) X is semi*-normal.
- (ii) For every semi*-closed set A in X and every semi*-open set U containing A, there exists a semi*open set V containing A such that $s*Cl(V) \subseteq U$.
- (iii) For each pair of disjoint semi*-closed sets A and B in X, there exists a semi*-open set U containing A such that $s^*Cl(U)\cap B=\phi$.
- (iv) For each pair of disjoint semi*-closed sets A and B in X, there exist semi*-open sets U and V containing A and B respectively such that $s^*Cl(U) \cap s^*Cl(V) = \phi$.

Proof: (i) \Rightarrow (ii): Let U be a semi*-open set containing the semi*-closed set A. Then B=X\U is a semi*-closed set disjoint from A. Since X is semi*-normal, there exist disjoint semi*-open sets V and W containing A and B respectively. Then *s***Cl*(V) is disjoint from B, since if y \in B, the set W is a semi*-open set containing y disjoint from V. Hence *s***Cl*(V) \subseteq U.

(ii) \Rightarrow (iii): Let A and B be disjoint semi*-closed sets in X. Then X\B is a semi*-open set containing A. By (ii), there exists a semi*-open set U containing A such that $s*Cl(U) \subseteq X\setminus B$. Hence $s*Cl(U) \cap B=\phi$. This proves (iii).

(iii) \Rightarrow (iv): Let A and B be disjoint semi*-closed sets in X. Then, by (iii), there exists a semi*-open set U containing A such that $s*Cl(U)\cap B=\phi$. Since s*Cl(U) is semi*-closed, B and s*Cl(U) are disjoint semi*-closed sets in X. Again by (iii), there exists a semi*-open set V containing B such that $s*Cl(U)\cap s*Cl(V)=\phi$. This proves (iv).

(iv) \Rightarrow (i): Let A and B be the disjoint semi*-closed sets in X. By (iv), there exist semi*-open sets U and V containing A and B respectively such that $s*Cl(U)\cap s*Cl(V)=\phi$. Since $U\cap V\subseteq s*Cl(U)\cap s*Cl(V)$, U and V are disjoint semi*-open sets containing A and B respectively. Thus X is semi*-normal.

Theorem 4.3: For a space X, then the following are equivalent:

- (i) X is semi*-normal.
- (ii) For any two semi*-open sets U and V whose union is X, there exist semi*-closed subsets A of U and B of V whose union is also X.

Proof: (i) \Rightarrow (ii): Let U and V be two semi*-open sets in a semi*-normal space X such that $X=U \cup V$. Then X\U, X\V are disjoint semi*-closed sets. Since X is semi*-normal, there exist disjoint semi*-open sets G₁ and G₂ such that X\U \subseteq G₁ and X\V \subseteq G₂. Let A=X\G₁ and B=X\G₂. Then A and B are semi*-closed subsets of U and V respectively such that A \cup B=X. This proves (ii).

(ii) \Rightarrow (i): Let A and B be disjoint semi*-closed sets in X. Then X\A and X\B are semi*-open sets whose union is X. By (ii), there exists semi*-closed sets F₁ and F₂ such that F₁ \subseteq X\A, F₂ \subseteq X\B and F₁ \cup F₂=X. Then X\F₁

and X\F2 are disjoint semi*-open sets containing A and B respectively. Therefore X is semi*-normal.

Definition 4.4: A space X is said to be *s**-normal* if for every pair of disjoint closed sets A and B in X, there are disjoint semi*-open sets U and V in X containing A and B respectively.

- **Theorem 4.5:** (i) Every normal space is s**-normal.
 - (ii) Every s**-normal space is s-normal.
 - (iii) Every semi*-normal space is s**-normal.

Proof: Suppose X is normal. Let A and B be disjoint closed sets in X. Since X is normal, there exist disjoint open sets U and V containing A and B respectively. Then by Theorem 2.5(i), U and V are semi*-open in X. This implies that X is s**-normal. This proves (i).

Suppose X is s**-normal. Let A and B be disjoint closed sets in X. Since X is s**-normal, there exist disjoint semi*-open sets U and V containing A and B respectively. Then by Theorem 2.5(ii), U and V are semi-open in X. This implies that X is s-normal. This proves (ii).

Suppose X is semi*-regular. Let A and B be disjoint closed sets in X. Then by Theorem 2.5(i), A and B are disjoint semi*-closed sets in X. Since X is semi*-regular, there exist disjoint semi*-open sets U and V containing A and B respectively. Therefore X is s**-normal. This proves (iii).

Theorem 4.6: In a topological space X, the following are equivalent:

- (i) X is s**-normal.
- (ii) For every closed set F in X and every open set U containing F, there exists a semi*-open set V containing F such that $s*Cl(V) \subseteq U$.
- (iii) For each pair of disjoint closed sets A and B in X, there exists a semi*-open set U containing A such that $s^*Cl(U)\cap B=\phi$.

Proof: (i) \Rightarrow (ii): Let U be a open set containing the closed set F. Then H=X\U is a closed set disjoint from F. Since X is s**-normal, there exist disjoint semi*-open sets V and W containing F and H respectively. Then s*Cl(V) is disjoint from H, since if y \in H, the set W is a semi*-open set containing y disjoint from V. Hence $s*Cl(V)\subseteq U$.

(ii) \Rightarrow (iii): Let A and B be disjoint closed sets in X. Then X\B is an open set containing A. By (ii), there exists a semi*-open set U containing A such that $s*Cl(U) \subseteq X\setminus B$. Hence $s*Cl(U) \cap B=\phi$. This proves (iii).

(iii) \Rightarrow (i): Let A and B be the disjoint semi*-closed sets in X. By (iii), there exists a semi*-open set U containing A such that $s*Cl(U)\cap B=\phi$. Take $V=X\setminus s*Cl(U)$. Then U and V are disjoint semi*-open sets containing A and B respectively. Thus X is s**-normal.

Theorem 4.7: For a space X, then the following are equivalent:

(i) X is s**-normal.

(ii) For any two open sets U and V whose union is X, there exist semi*-closed subsets A of U and B of V whose union is also X.

Proof: (i) \Rightarrow (ii): Let U and V be two open sets in an s**-normal space X such that $X=U \cup V$. Then X\U, X\V are disjoint closed sets. Since X is s**-normal, there exist disjoint semi*-open sets G₁ and G₂ such that $X\setminus U\subseteq G_1$ and $X\setminus V\subseteq G_2$. Let $A=X\setminus G_1$ and $B=X\setminus G_2$. Then A and B are semi*-closed subsets of U and V respectively such that $A\cup B=X$. This proves (ii).

(ii) \Rightarrow (i): Let A and B be disjoint closed sets in X. Then X\A and X\B are open sets whose union is X. By (ii), there exists semi*-closed sets F₁ and F₂ such that F₁ \subseteq X\A, F₂ \subseteq X\B and F₁ \cup F₂=X. Then X\F₁ and X\F₂ are disjoint semi*-open sets containing A and B respectively. Therefore X is s**-normal.

Remark 4.8: It is not always true that an s^{**} -normal space X is s^{*} -regular as shown in the following example. However it is true if X is R_0 as seen in Theorem 4.10.

Example 4.9: Let X={a, b, c, d} with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Clearly (X, τ) is s**-normal but not s*-regular.

Theorem 4.10: Every s**-normal R₀ space is s*-regular.

Proof: Suppose X is s**-normal and R₀. Let F be a closed set and $x \notin F$. Since X is R₀, by Theorem 2.8(i), $Cl(\{x\}) \cap F = \phi$. Since X is s**-normal, there exist disjoint semi*-open sets U and V in X containing $Cl(\{x\})$ and F respectively. It follows that X is s*-regular.

Corollary 4.11: Every s**-normal T₁ space is s*-regular.

Proof: Follows from the fact that every T_1 space is R_0 and Theorem 4.10.

Theorem 4.12: If f is an injective and semi*-irresolute and pre-semi*-closed mapping of a topological space X into a semi*-normal space Y, then X is semi*-normal.

Proof: Let *f* be an injective and semi*-irresolute and pre-semi*-closed mapping of a topological space X into a semi*-normal space Y. Let A and B be disjoint semi*-closed sets in X. Since *f* is a pre-semi*-closed function, f(A) and f(B) are disjoint semi*-closed sets in Y. Since Y is semi*-normal, there exist disjoint semi*-open sets V₁ and V₂ in Y containing f(A) and f(B) respectively. Since *f* is semi*-irresolute, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint semi*-open sets in X containing A and B respectively. Hence X is semi*-normal.

Theorem 4.13: If f is an injective and semi*-continuous and closed mapping of a topological space X into a normal space Y and if every semi*-closed set in X is closed, then X is semi*- normal.

Proof: Let A and B be disjoint semi*-closed sets in X. By assumption, A and B are closed in X.

Then f(A) and f(B) are disjoint closed sets in Y. Since Y is normal, there exist disjoint open sets V_1 and V_2 in Y such that $f(A) \subseteq V_1$ and $f(B) \subseteq V_2$. Then $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint semi*-open sets in X containing A and B respectively. Hence X is semi*- normal.

Theorem 4.14: If $f: X \rightarrow Y$ is a semi*-irresolute injection which is pre-semi*-open and X is semi*-normal, then Y is also semi*-normal.

Proof: Let $f: X \rightarrow Y$ be a semi*-irresolute surjection which is semi*-open and X be semi*-normal. Let A and B be disjoint semi*-closed sets in Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint semi*-closed sets in X. Since X is semi*-normal, there exist disjoint semi*-open sets U_1 and U_2 containing $f^{-1}(A)$ and $f^{-1}(B)$ respectively. Since f is presemi*-open, $f(U_1)$ and $f(U_2)$ are disjoint semi*-open sets in Y containing A and B respectively. Hence Y is semi*-normal.

Remark 4.15: It is not always true that a semi*-normal space X is semi*-regular as shown in the following example. However it is true if X is semi*- R_0 as seen in Theorem 4.17.

Example 4.16: Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a, b\}, X\}$. Clearly (X, τ) is semi*-normal but not semi*-regular.

Theorem 4.17: Every semi*-normal space that is semi*-R₀ is semi*-regular.

Proof: Suppose X is semi*-normal that is semi*-R₀. Let F be a semi*-closed set and $x \notin F$. Since X is semi*-R₀, by Theorem 2.8(ii), $s*Cl(\{x\}) \cap F=\phi$. Since X is semi*-normal, there exist disjoint semi*-open sets U and V in X containing $s*Cl(\{x\})$ and F respectively. It follows that X is semi*-regular.

Corollary 4.18: Every semi*-normal semi*-T₁ space is semi*-regular.

Proof: Follows from the fact that every semi*- T_1 space is semi*- R_0 and Theorem 4.13.

REFERENCES

- [1] Biswas, N., On Characterization of semi-continuous functions, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 48(8)1970, 399-402.
- [2] Crossley, S.G and Hildebrand, S.K., Semi-topological properties, Fund. Math. 74 (1972), 233-254.

[3] Dorsett, C., Semi –regular spaces, *Soochow journal of Mathematics*, 8 (1982), 45-53.

- [4] Dorsett, C., Semi-Normal Spaces, *Kyungpook Mathematical Journal*, 25 (2)(1985), 173-180.
- [5] Dunham, W., A new closure operator for Non-T₁ topologies, *Kyungpook Math. J.* 22 (1982), 55-60.
- [6] Levine, N., Semi-open sets and semi-continuity in topological space, *Amer. Math. Monthly*. 70 (1963), 36-41.
- [7] Levine, N., Generalized closed sets in topology, *Rend. Circ. Mat. Palermo.* 19(2)(1970), 89-96.
- [8] Maheswari, S.N., and Prasad, R., On s-regular spaces, *Glansnik Mat.Ser*.III 10 (30), 1975, 347-350.
- [9] Maheswari, S.N., and Prasad, R., On s-normal spaces, Bull. Math. Soc. Sci Math. R. S. de Roumanie T22(70), 1978, 27-30.
- [10] Pious Missier, S., and Robert, A., On Semi*-open Sets, *International Journal of Mathematics and Soft Computing*, 2(1) (2012), 95-102.
- [11] Pious Missier, S. and Robert, A., Characterization of semi*-R₀ and semi*-R₁ spaces (communicated)
- [12] Robert, A. and Pious Missier, S., A New Class of Nearly Open Sets, *International Journal of Mathematical Archive*, 3(7), 2012, 1-8.
- [13] Robert, A. and Pious Missier, S., On Semi*-closed sets, Asian Journal Of Current Engineering And Maths.,1 (4) (2012),173-176.
- [14] Robert, A. and Pious Missier, S., On Functions Associated with Semi*-open Sets, (communicated).
- [15] Robert, A. and Pious Missier, S., More Functions Associated with Semi*-open Sets, (communicated).
- [16] Shanin, N.A., On separation in topological spaces, C.R.(Doklady) Acad. Sci. URSS(N.S.), 38(1943),110-113.
- [17] Willard, S., General Topology, Addison Wesley Publishing Company, Inc.(1970).