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Abstract: The M -ideals defined on a real Banach space are called u -ideals. The u -ideals containing 

isomorphic copies of  
1

  are not strict u -ideals.  In this  paper we show that u -ideals with unconditional 

basis  n
x which is shrinking has no isomorphic copy of 

1


 
and thus a strict u -ideal. Finally we show that 

u -ideals with unconditional basis  n
x which is boundedly complete is not homeomorphic to copies of 

0
c  

implying that they are weak


closed in their biduals X


. 
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I. INTRODUCTION 

A sequence  
1n i

x



 is called a basis of a normed space X  if  for  every  x X there exists a unique 

series  

1

i i

i

a x



  that converges to x .  The basis  
1n i

x



 for a Banach space X  is an unconditional basis if  for 

each  x X  there exists a unique expansion of the form  
1

n n

n

x a x





   where the sum converges 

unconditionally. The basis  
n

x is said to be boundedly complete whenever given a sequence  
n

a of scalars 

for which  1
: 1

n

k kk
a x n


  is bounded, then 

1
lim

n

n k Kk
a x

  exists. If 
n

x X is not boundedly 

complete then X  contains an isomorphic copy of 
0

c  [1]. 

Let y X


  which belongs to X . We say that  n
x is shrinking,      

      
1 1

, , . , , .

n n

i i i i

i i
n n

u y u x y u x u

 

   
   

   
  converges to ,y u  for every u X


 . 

The notion of u -ideals was introduced and studied thoroughly by Godfrey et al [2]. They generalized M -

ideals defined on a real Banach space. In their paper on unconditional Ideals they established that u -ideals 

containing copies of 
1

  are not strict u -ideals. A  Banach space X  is said to be a strict u -ideal in its bidual 

when the canonical decomposition 


 XXX  is unconditional. In other words for X  to be a strict 

u -ideal the u -complement of X


 must be norming, that is, the range V  of the induced projection on X


 

is   a norming subspace of X


. Vegard and Asvald  3  characterized Banach spaces which are strict u -

ideals in their biduals and showed that X  is a strict u -ideal in a Banach space  Y  if it contains 
0

c . Matuya et 

al [4]  using the approximation properties, hermitian conditions, isometry studied properties of u -ideals and 
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their characterization. They showed that u -ideals containing no copies of sequence space 
1

  are strict u - 

ideals. In this paper we show that Banach spaces with unconditional basis  n
x  that is shrinking is not 

homeomorphic to copies of 
1

  and so it a strict u -ideal. We also show that the u -ideals with unconditional 

basis which are boundedly complete are not bicontinuous to 
0

c  meaning their u -complement is weak


closed. 

II. RESULTS ON STRICT u -IDEALS 

 2.1 Proposition  

Let X  be u -ideal with unconditional basis  n
x . The following statements are equivalent: 

[1] The sequence  n
x is shrinking 

[2] X  contains no copy of 
1

  

[3] X  is a strict u -ideal 

Proof:  i ii  it is clear from the definition that if a sequence  n
x is shrinking then X  contains no 

isomorphic copy of  
1

  . In fact proving by contradiction it suffices to show that X  contains a copy of 
1

  . Let 

 n
c be a sequence of coefficient functional associated with  n

x . Our hypothesis applies that, for some 

c X


 , the series 
1

, .
n n

n

c x c





  does not converge in  , ,X X X
  

 
 implying that  

1

, .

k

n n

n k

c x c



 

 
 
  cannot be Cauchy  in  , ,X X X

  
 

. We therefore find a bounded set 
1

L    and 

for each k    we define maps , :P Q L X


 by  
1

, .
n n

n

P c x c





   and  

 
1

, .

k

n n

n k

Q c x c



 
  
 
  which implies together with   2L P Q     that 

     2L Q L P       holds. P  is continuous since  n
x  is bounded, so that P  maps L


 

homeomorphically into X . Now L


 is dense in 
1

  . Since 
1


 
is weakly sequentially complete the same is true 

for the subspace  1
P   of  X . In particular  n

c has a weak limit in X  and so does  n
x  because of 

, lim , ,
k n k

n

x c x c k
 

    , this limit has to be x  and this is the desired contradiction. 

ii iii  Considering the map P  it is clear from the definition that if x X
 
  and P x x

 
  then  x U


  

where  U p x


 . Now for each X


  we consider the set   |F x X P x x


 
  

    then 

there is a net  d X
x B 


  converging in the weak


-topology of X


 to u . However, u x X

 
   so that 

d
x


 converges to x


. Thus      lim

d
d

u x x  
 

   so that    u x x 
 

 . Now 

   P x u x 
 

 so we conclude that x F



 . Hence F


 is norming. 

iii i  Suppose X  is strict u -ideal. We proceed to show  that  n
x is shrinking. Let y X


  which 

belongs to X . Since  n
x is shrinking,            

1 1
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n n
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i i
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converges to ,y u  for every u X


 . We conclude from this that 

1

, .

n

i i

i

y u x



 

 
 
  is bounded in X  so it 

has a limit say  

x . 
1

, , . , ,
i i

i

x u y u x u y u





  , for all u X


  , 

 we get  y x X  . 

2.2 Proposition Let X  be u -ideal   with unconditional basis  n
x . Show that if X contains no copy of 

0
c  

then  

[1]  n
x  is boundedly complete 

[2]  n
x


is weak


 closed in X


 

Suppose  n
x  is not boundedly complete. Then there exists  i

T   with 

1

n

i i

i n

x



 

 
 
 bounded  but not 

Cauchy in X . Let now e    and let     an d  
i i

m n  be increasing sequences in   such that 

1i i i
m n m


   and 

i

i j j e

m

a x u   , that is,   1 ,
i

e a i    . Here we set 

 , , .....,
i i i k i

M m m n


 . Choose 
0

i e
u U  such that , 1

i i
u a   , i    and let f    be 

such that                            ,
, , an d   

M
e e x f x x X M


       . 

By construction of the sets 
i

M  , it follows that  

i

i i i g

i i j M

g a g x e

  

  
   

   

  
 

 ,    

Whence     ,
i g

i

v a e






  
0

,
g

g v U    . 

There exists a constant 0c   such that   

, .
i g

i

v a c e






    
0

,
g

g v U    . 

Consider now T  as a subspace of 
0

c  and define  

: T X   by   n n

n

a    . 

Then   is linear and continuous, because of 

  n n

n

g g a  
 

  
 
   

0

lu b , . .
g

n n g
U

n

v a c e 


  ,  ,g T    . 

  is also open , because given T    and j     such that 
j

 


 , then we can choose       

such that  
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, ,
i i j i i j i

u a u a      for all i   .  

Therefore    ,
j n j n

n

u a  

    

,
j n n n n n n

n n

v a e a   
 

   
 

   

 f   . 

Thus  is bicontinuous between  T  and X . This implies that T  is dense in 
0

c  and since X is sequencially 

complete,  extends a linear homeomorphic embedding 
0

c into X  which is a contradiction. 

We shall show that when    a n d   
n n

x X x X
   

   satisfy  

1 n nn
x x

  


    

and  

 
1

0
n nn

x s x
   


  for  ,s F X X , 

 then  

 
1

0
n nn

x x
  


 .  

We may assume that  

0
n

x

  and 

1n
M x

 


   . 

Let  0   and choose N    such that 
4n N

x




 .  Since X has the weak approximating sequence, 

for  ˆ
ˆ ,

L

X
K X Z




  , there exists a net    ˆ ˆ,s F X X


 such that lu b 1s
 

     

 and  

           L s x k L x k L k x


 
  .  

Therefore s x x


  
  weak


 for all  x L k


 . In particular s x x



  
  for all x F


 . Since 

1 ,s


  we also have 1 ,s L



  if  1x


  then x L k


  for some k K . Thus 1s x



 
  

, so s x


 
  is weak


 convergent. Hence there is some s


 such that 

2
n n

x s x
M



  
   ,  1, ....,n N  

Now we have  

 
1 1

n n n n

n n

x x x s x


 

    

 

    

  

1

N
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x x s x


   



   n n n
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2 2

 
    

Hence  

 
1

0
n nn

x x
  


  

 

III. CONCLUSION 
We have shown that u -ideals can be characterized using sequence spaces. In particular we considered 

the sequence spaces 
1

  and 
0

c . The u -ideals containing no isomorphic copies of 
1

  are strict u -ideals 

whereas those that are not homeomorphic to the copies of 
0

c  their u -complement is weak


-closed 
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