ON SOME ASPECTS OF u -IDEALS DETERMINED BY ℓ_1 **AND** c_{o}

John Wanyonyi Matuya¹, Achiles Simiyu² and Shem aywa²

¹Department of Mathematics, Maasai Mara University, P.O Box 861-20500, Narok, Kenya ²Department of Mathematics, Masinde Muliro University of science and Technology, P.O BOX 190-50100, Kakamega, Kenya.

Abstract: The M -ideals defined on a real Banach space are called u -ideals. The u -ideals containing isomorphic copies of l, are not strict u-ideals. In this paper we show that u-ideals with unconditional basis (x_n) which is shrinking has no isomorphic copy of ℓ_1 and thus a strict u -ideal. Finally we show that u -ideals with unconditional basis (x_n) which is boundedly complete is not homeomorphic to copies of c_0 implying that they are weak^{*} closed in their biduals X^{**}

Key Words: u -ideals, strict u -ideals, Shrinking, boundedly complete

2010 Mathematics Subject Classification: 47B10; 46B10; 46A25 This work was supported by National Council of Science and Technology (NCST), Kenya.

INTRODUCTION I.

A sequence $(x_n)_{i=1}^{\infty}$ is called a basis of a normed space X if for every $x \in X$ there exists a unique series $\sum_{i=1}^{n} a_i x_i$ that converges to x. The basis $(x_n)_{i=1}^{\infty}$ for a Banach space X is an unconditional basis if for $x \in X$ there exists a unique expansion of the form $x = \sum_{n=1}^{\infty} a_n x_n$ where the sum converges each unconditionally. The basis (x_n) is said to be boundedly complete whenever given a sequence (a_n) of scalars for which $\left\{\sum_{k=1}^{n} a_k x_k : n \ge 1\right\}$ is bounded, then $\lim_{n} \sum_{k=1}^{n} a_k x_k$ exists. If $x_n \in X$ is not boundedly complete then X contains an isomorphic copy of c_0 [1]. Let $y \in X^{**}$ which belongs to X. We say that (x_n) is shrinking,

$$\left(\left\langle u, \sum_{i=1}^{n} \left\langle y, u_{i} \right\rangle, x_{i} \right\rangle \right)_{n} = \left(\left\langle y, \sum_{i=1}^{n} \left\langle u, x_{i} \right\rangle, u_{i} \right\rangle \right)_{n} \text{ converges to } \left\langle y, u \right\rangle \text{ for every } u \in X^{*}$$

The notion of u-ideals was introduced and studied thoroughly by Godfrey et al [2]. They generalized Mideals defined on a real Banach space. In their paper on unconditional Ideals they established that u-ideals containing copies of ℓ_1 are not strict u -ideals. A Banach space x is said to be a strict u -ideal in its bidual when the canonical decomposition $X^{***} = X^* \oplus X^{\perp}$ is unconditional. In other words for X to be a strict u -ideal the u -complement of X^{\perp} must be norming, that is, the range V of the induced projection on X^{***}

is a norming subspace of X^* . Vegard and Asvald [3] characterized Banach spaces which are strict u ideals in their biduals and showed that X is a strict u -ideal in a Banach space Y if it contains c_0 . Matuya et al [4] using the approximation properties, hermitian conditions, isometry studied properties of u-ideals and their characterization. They showed that u-ideals containing no copies of sequence space ℓ_1 are strict u-ideals. In this paper we show that Banach spaces with unconditional basis (x_n) that is shrinking is not homeomorphic to copies of ℓ_1 and so it a strict u-ideal. We also show that the u-ideals with unconditional basis which are boundedly complete are not bicontinuous to c_0 meaning their u-complement is weak * closed.

2.1 Proposition

II. RESULTS ON STRICT *u* -IDEALS

Let X be u -ideal with unconditional basis (x_n) . The following statements are equivalent:

- [1] The sequence (x_n) is shrinking
- [2] X contains no copy of ℓ_1
- [3] X is a strict u -ideal

Proof: $i \Rightarrow ii$ it is clear from the definition that if a sequence (x_n) is shrinking then X contains no isomorphic copy of ℓ_1 . In fact proving by contradiction it suffices to show that X contains a copy of ℓ_1 . Let (c_n) be a sequence of coefficient functional associated with (x_n) . Our hypothesis applies that, for some $c \in X^{**}$, the series $\sum_{n=1}^{\infty} \langle c, x_n \rangle \cdot c_n$ does not converge in $\left[X^{**}, \rho\left(X^{**}, X\right)\right]$ implying that $\left(\sum_{n=1}^{k} \langle c, x_n \rangle \cdot c_n\right)_k$ cannot be Cauchy in $\left[X^{**}, \rho\left(X^{**}, X\right)\right]$. We therefore find a bounded set $L \subset \ell_1$ and for each $k \in \mathbb{N}$ we define maps $P, Q: L^{\mathbb{N}} \to X$ by $P(\xi) = \sum_{n=1}^{\infty} \langle c, x_n \rangle \cdot c_n$ and $Q(\xi) = \left(\sum_{n=1}^{k} \langle c, x_n \rangle \cdot c_n\right)_k$ which implies together with $L(P\xi - Q\xi) \le 2 \|\xi\|$ that

 $L(Q\xi) \ge L(P\xi) - 2 \|\xi\| \ge (\xi)$ holds. *P* is continuous since (x_n) is bounded, so that *P* maps $L^{\mathbb{N}}$ homeomorphically into *X*. Now $L^{\mathbb{N}}$ is dense in ℓ_1 . Since ℓ_1 is weakly sequentially complete the same is true for the subspace $P(\ell_1)$ of *X*. In particular (c_n) has a weak limit in *X* and so does (x_n) because of $\langle x, c_k \rangle = \lim_{n \to \infty} \langle x_n, c_k \rangle$, $\forall k \in \mathbb{N}$, this limit has to be *x* and this is the desired contradiction.

 $ii \Rightarrow iii$ Considering the map P it is clear from the definition that if $x^* \in X^*$ and $Px^* = x^*$ then $x^* \in U$ where $U = p(x^{***})$. Now for each $\eta \in X^{**}$ we consider the set $F_{\eta} = \{x^* \in X \mid P\eta(x^*) = \eta x^*\}$ then there is a net $(x_d^*) \in B_{x^*}$ converging in the weak *-topology of X^{***} to u. However, $u - x^* \in X^{\perp}$ so that x_d^* converges to x^* . Thus $u(\eta) = \lim_d \eta(x_d^*) = \eta(x^*)$ so that $ux^*(\eta) = \eta(x^*)$. Now $P\eta(x^*) = ux^*(\eta)$ so we conclude that $x^* \in F_{\eta}$. Hence F_{η} is norming. $iii \Rightarrow i$ Suppose X is strict u-ideal. We proceed to show that (x_n) is shrinking. Let $y \in X^{**}$ which

belongs to X. Since (x_n) is shrinking, $\left(\left\langle u, \sum_{i=1}^n \langle y, u_i \rangle, x_i \right\rangle\right)_n = \left(\left\langle y, \sum_{i=1}^n \langle u, x_i \rangle, u_i \rangle\right)_n$

converges to $\langle y, u \rangle$ for every $u \in X^*$. We conclude from this that $\left(\sum_{i=1}^n \langle y, u_i \rangle, x_i\right)$ is bounded in X so it has a limit say

$$x \cdot \langle x, u \rangle = \sum_{i=1}^{\infty} \langle y, u_i \rangle \cdot \langle x_i, u \rangle = \langle y, u \rangle, \text{ for all } u \in X^*,$$

we get $y = x \in X$.

2.2 Proposition Let X be u -ideal with unconditional basis (x_n) . Show that if X contains no copy of c_0 then

- [1] (x_n) is boundedly complete
- [2] (x_n^*) is weak ^{*} closed in X ^{**}

Suppose (x_n) is not boundedly complete. Then there exists $(\lambda_i) \in T$ with $\left(\sum_{i=1}^n \lambda_i x_i\right)_n$ bounded but not

Cauchy in X. Let now $e \in \Psi$ and let (m_i) and (n_i) be increasing sequences in \mathbb{N} such that $m_i < n_i < m_{i+1}$ and $a_i = \sum_{m_i} \lambda_j x_j \notin u_e$, that is, $e(a_i) > 1$, $\forall i \in \mathbb{N}$. Here we set $M_i = \{m_i, m_{i+k}, \dots, n_i\}$. Choose $u_i \in U_e^0$ such that $|\langle u_i, a_i \rangle| > 1$, $\forall i \in \mathbb{N}$ and let $f \in \Psi$ be

such that $e\left(e_{M,\delta}x\right) \leq f\left(x\right), \ \forall \ x \in X \ , \ M \in \mathbb{N} \ \text{and} \ \delta \in \Delta \ .$

By construction of the sets M_{i} , it follows that

$$g\left(\sum_{i\in\mathbb{N}}a_{i}\right) = g\left(\sum_{i\in\mathbb{N}}\sum_{j\in\mathcal{M}_{i}}\lambda_{i}x_{i}\right) \leq e_{g} ,$$

Whence $\left|\left\langle v,\sum_{i\in\mathbb{N}}a_{i}\right\rangle\right| \leq e_{g} \quad \forall \ g\in\Psi , \ v\in U_{g}^{0}.$

There exists a constant c > 0 such that

$$\sum_{i \in \mathbb{N}} \left| \left\langle v, a_i \right\rangle \right| \le c \cdot e_g \quad \forall g \in \Psi , v \in U_g^0.$$

Consider now T as a subspace of c_0 and define

$$\beta: T \rightarrow X$$
 by $\beta(\eta) = \sum_{n} \eta_{n} a_{n}$.

Then β is linear and continuous, because of

$$g\left(\beta\eta\right) = g\left(\sum_{n}\eta_{n}a_{n}\right)$$
$$= \left. \lim_{U_{g}^{0}} \left| \left\langle v, \sum_{n}\eta_{n}a_{n} \right\rangle \right| \le c.e_{g}. \left\|\eta\right\|_{\infty}, \ \forall \ g \in \Psi \ , \eta \in T$$

 β is also open, because given $\eta \in T$ and $j \in \mathbb{N}$ such that $|\eta_j| = ||\eta||_{\infty}$, then we can choose $\delta \in \Delta$ such that

 $\delta_{i}\eta_{i}\left\langle u_{j},a_{i}\right\rangle = \left|\eta_{i}\left\langle u_{j},a_{i}\right\rangle\right| \quad \text{for all } i \in \mathbb{N} \text{ .}$ Therefore $\left\|\eta\right\|_{\infty} = \left|\eta_{j}\right| \leq \sum_{n} \left|\eta_{n}\right| \left|\left\langle u_{j},a_{n}\right\rangle\right|$

$$= \left\langle v_{j}, \sum_{n} \delta_{n} \eta_{n} a_{n} \right\rangle \leq e \left(\sum_{n} \delta_{n} \eta_{n} a_{n} \right)$$
$$\leq f \left(\beta \eta \right).$$

Thus β is bicontinuous between T and X. This implies that T is dense in c_0 and since X is sequencially complete, β extends a linear homeomorphic embedding c_0 into X which is a contradiction.

We shall show that when $(x_n^*) \subset X^*$ and $(x_n^{**}) \subset X^{**}$ satisfy

$$\sum_{n=1}^{\infty} \|x_{n}^{*}\| \|x_{n}^{**}\| < \infty$$

and
$$\sum_{n=1}^{\infty} x_{n}^{**} (s^{*} x_{n}^{*}) = 0 \text{ for } s \in F(X, X),$$

then
$$\sum_{n=1}^{\infty} x_{n}^{**} (x_{n}^{*}) = 0.$$

We may assume that

 $\left\|x_{n}^{*}\right\| \rightarrow 0 \text{ and } M = \sum_{n=1}^{\infty} \left\|x^{**}\right\| < \infty$.

Let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $\sum_{n > N} \|x^{**}\| < \frac{\varepsilon}{4}$. Since X has the weak approximating sequence,

for $\lambda = \frac{L^*}{\hat{X}} \in K(\hat{X}, Z^*)$, there exists a net $(s_{\alpha}) \subset F(\hat{X}, \hat{X})$ such that $\ln b_{\alpha} \|\lambda s_{\alpha}\| \leq \|\lambda\| \leq 1$ and

 $(L^* s_{\alpha} x)(k) \rightarrow (L^* x)(k) = (Lk)(x).$

Therefore $s_{\alpha}^* x^* \to x^*$ weak^{*} for all $x^* \in L(k)$. In particular $s_{\alpha}^* x^* \to x^*$ for all $x^* \in F$. Since $\|\beta s_{\alpha}\| \le 1$, we also have $\|s_{\alpha}^* L\| \le 1$, if $\|x^*\| = 1$ then $x^* = Lk$ for some $k \in K$. Thus $\|s_{\alpha}^* x^*\| \le 1$, so $s_{\alpha}^* \to x^*$ is weak^{*} convergent. Hence there is some s_{α} such that

$$\left\|x_n^* - s_\alpha^* x_n^*\right\| < \frac{\varepsilon}{2M}, \quad n = 1, \dots, N$$

Now we have

Now we have

$$\begin{aligned} & \left| \sum_{n=1}^{\infty} x_n^{**} \right| = \sum_{n=1}^{\infty} x_n^{**} \left(x_n^* - s_\alpha^* x_n^* \right) \\ & \leq \sum_{n=1}^{N} \left\| x_n^{**} \right\| \left\| x_n^* - s_\alpha^* x_n^* \right\| + \sum_{n>N} \left\| x_n^{**} \right\| \left\| Lk_n - s_\alpha^* Lk_n \right\| \\ & \leq \frac{\varepsilon}{2} + \sum_{n>N} \left\| x_n^{**} \right\| \left(\left\| L \right\| + \left\| s_\alpha^* L \right\| \right) \left\| k_n \right\| \end{aligned}$$

 $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ Hence $\sum_{n=1}^{\infty} x_n^{**} (x_n^*) = 0$

III. CONCLUSION

We have shown that u-ideals can be characterized using sequence spaces. In particular we considered the sequence spaces ℓ_1 and c_0 . The u-ideals containing no isomorphic copies of ℓ_1 are strict u-ideals whereas those that are not homeomorphic to the copies of c_0 their u-complement is weak^{*}-closed

IV. ACKNOWLEDGEMENT

The authors convey their appreciation to the National Council of Science and Technology (NCST), Kenya for funding this research work and Masinde Muliro University of science and Technology for their technical support.

REFERENCES

- [1] Diestel. J. " Sequences and Series in Banach spaces". Springer-Verlag Newyork , 1984.
- [2] Godefrey, G. Kalton, J. and Saphar, P. "Unconditional ideals in Banach spaces ".studia Mathematica.104 No.1,(1993) 13-59.
- [3] Lima, V. Lima, A. "Strict *u* -ideals in Banach spaces ".studia Math.3 No.195 (2009) 275-285.
- [4] Matuya . J. W. et al "On characterization of *u* -ideals determined by sequences" A.J. Curr.Eng and Math.1(2012) 247-250.