Zero-Free Regions for Polynomials With Restricted Coefficients

M. H. Gulzar
Department of Mathematics University of Kashmir, Srinagar 190006

Abstract: According to a famous result of Enestrom and Kakeya, if

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}
$$

is a polynomial of degree n such that

$$
0<a_{n} \leq a_{n-1} \leq \ldots \ldots \leq a_{1} \leq a_{0}
$$

then $P(z)$ does not vanish in $|z|<1$. In this paper we relax the hypothesis of this result in several ways and obtain zero-free regions for polynomials with restricted coefficients and thereby present some interesting generalizations and extensions of the Enestrom-Kakeya Theorem.
Mathematics Subject Classification: 30C10,30C15
Key-Words and Phrases: Zero-free regions, Bounds, Polynomials

1. Introduction And Statement Of Results

The following elegant result on the distribution of zeros of a polynomial is due to Enestrom and Kakeya [6] :
Theorem A : If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n such that

$$
a_{n} \geq a_{n-1} \geq \ldots \ldots \geq a_{1} \geq a_{0}>0
$$

then $\mathrm{P}(\mathrm{z})$ has all its zeros in $|z| \leq 1$.
Applying the above result to the polynomial $z^{n} P\left(\frac{1}{z}\right)$, we get the following result :
Theorem B : If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n such that

$$
0<a_{n} \leq a_{n-1} \leq \ldots \ldots \leq a_{1} \leq a_{0}
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in $|z|>1$.
In the literature [1-5, 7,8], there exist several extensions and generalizations of the Enestrom-Kakeya Theorem . Recently B. A. Zargar [9] proved the following results:
Theorem C: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n . If for some real number $k \geq 1$,

$$
0<a_{n} \leq a_{n-1} \leq \ldots \ldots \leq a_{1} \leq k a_{0}
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in the disk

$$
|z|<\frac{1}{2 k-1} .
$$

Theorem D: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n . If for some real number $\rho, 0 \leq \rho<a_{n}$,

$$
0<a_{n}-\rho \leq a_{n-1} \leq \ldots \ldots \leq a_{1} \leq a_{0}
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in the disk

$$
|z| \leq \frac{1}{1+\frac{2 \rho}{a_{0}}} .
$$

Theorem E: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n . If for some real number $k \geq 1$,

$$
k a_{n} \geq a_{n-1} \geq \ldots \ldots \geq a_{1} \geq a_{0}>0
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in

$$
|z|<\frac{a_{0}}{2 k a_{n}-a_{0}}
$$

Theorem F: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n . If for some real number $\rho \geq 0$, ,

$$
a_{n}+\rho \geq a_{n-1} \geq \ldots \ldots \geq a_{1} \geq a_{0}>0
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in the disk

$$
|z| \leq \frac{a_{0}}{2\left(a_{n}+\rho\right)-a_{0}}
$$

In this paper we give generalizations of the above mentioned results. In fact, we prove the following results:
Theorem 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real numbers $k \geq 1$ and $\rho \geq 0$,

$$
a_{n}-\rho \leq a_{n-1} \leq \ldots \ldots \leq a_{1} \leq k a_{0}
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in the disk

$$
|z|<\frac{\left|a_{0}\right|}{k\left(a_{0}+\left|a_{0}\right|\right)-\left|a_{0}\right|+2 \rho-a_{n}+\left|a_{n}\right|} .
$$

Remark 1: Taking $0=\rho<a_{n}$, Theorem 1 reduces to Theorem C and taking $\mathrm{k}=1$ and $0 \leq \rho<a_{n}$, , it reduces to Theorem D.
Theorem 2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real numbers $\rho \geq 0$ and $0<\tau \leq 1$,

$$
a_{n}+\rho \geq a_{n-1} \geq \ldots \ldots \geq a_{1} \geq \tau a_{0}
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in

$$
|z|<\frac{\left|a_{0}\right|}{2 \rho+a_{n}+\left|a_{n}\right|-\tau\left(a_{0}+\left|a_{0}\right|\right)+\left|a_{0}\right|}
$$

Remark 2: Taking $\tau=1$ and $a_{0}>0$, Theorem 1 reduces to Theorem F and taking $\tau=1, a_{0}>0$ and $\rho=(k-1) a_{n}, k \geq 1$, it reduces to Theorem E .
Also taking $\rho=(k-1) a_{n}, k \geq 1$, we get the following result which reduces to Theorem E by taking $a_{0}>0$ and $\tau=1$.
Theorem 3: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n . If for some real numbers $k \geq 1,0<\tau \leq 1$,

$$
k a_{n} \geq a_{n-1} \geq \ldots \ldots \geq a_{1} \geq \tau a_{0}
$$

then $\mathrm{P}(\mathrm{z})$ does not vanish in the disk

$$
|z|<\frac{a_{0}}{2 k a_{n}+(1-2 \tau) a_{0}} .
$$

2.Proofs of the Theorems

Proof of Theorem 1: We have

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0} .
$$

Let

$$
Q(z)=z^{n} P\left(\frac{1}{z}\right)
$$

and

$$
F(z)=(z-1) Q(z) .
$$

Then

$$
\begin{aligned}
& F(z)=(z-1)\left(a_{0} z^{n}+a_{1} z^{n-1}+\ldots . .+a_{n-1} z+a_{n}\right) \\
& =-a_{0} z^{n+1}-\left[\left(a_{0}-a_{1}\right) z^{n}+\left(a_{1}-a_{2}\right) z^{n-1}+\ldots . .+\left(a_{n-2}-a_{n-1}\right) z^{2}\right. \\
& \left.\quad+\left(a_{n-1}-a_{n}\right) z+a_{n}\right] .
\end{aligned}
$$

For $|z|>1$,

$$
\begin{aligned}
& |F(z)| \geq\left|a_{0}\right||z|^{n+1}-\left[\left|a_{0}-a_{1}\right||z|^{n}+\left|a_{1}-a_{2}\right||z|^{n-1}+\ldots \ldots+\left|a_{n-1}-a_{n}\right||z|+\left|a_{n}\right|\right] \\
& =\left|a_{0}\right||z|^{n}\left[|z|-\frac{1}{\left|a_{0}\right|}\left\{\left|a_{0}-a_{1}\right|+\frac{\left|a_{1}-a_{2}\right|}{|z|}+\ldots . .+\frac{\left|a_{n-1}-a_{n}\right|}{|z|^{n-1}}+\frac{\left|a_{n}\right|}{|z|^{n}}\right\}\right] \\
& >\left|a_{0}\right||z|^{n} \mathrm{~T}|z|-\frac{1}{\left|a_{0}\right|}\left\{\left|k a_{0}-a_{1}-k a_{0}+a_{0}\right|+\left|a_{1}-a_{2}\right|+\ldots \ldots+\left|a_{n-1}-a_{n}+\rho-\rho\right|\right. \\
& \left.\left.+\left|a_{n}\right|\right\}\right] \\
& \geq\left|a_{0}\right||z|^{n}\left[|z|-\frac{1}{\left|a_{0}\right|}\left\{\left(k a_{0}-a_{1}\right)+(k-1)\left|a_{0}\right|+\left(a_{1}-a_{2}\right)+\ldots \ldots .+\left(a_{n-2}-a_{n-1}\right)\right.\right. \\
& \left.\left.+\left(a_{n-1}-a_{n}+\rho\right)+\rho+\left|a_{n}\right|\right\}\right] \\
& =\left|a_{0}\right||z|^{n}\left[|z|-\frac{1}{\left|a_{0}\right|}\left\{k\left(a_{0}+\left|a_{0}\right|\right)-\left|a_{0}\right|-a_{n}+\left|a_{n}\right|+2 \rho\right\}\right] \\
& >0 \\
& \text { if }
\end{aligned}
$$

$$
|z|>\frac{1}{\left|a_{0}\right|}\left[k\left(a_{0}+\left|a_{0}\right|\right)-\left|a_{0}\right|-a_{n}+\left|a_{n}\right|+2 \rho\right] .
$$

This shows that all the zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is greater than 1 lie in the closed disk

$$
|z| \leq \frac{1}{\left|a_{0}\right|}\left[k\left(a_{0}+\left|a_{0}\right|\right)-\left|a_{0}\right|-a_{n}+\left|a_{n}\right|+2 \rho\right] .
$$

But those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is less than or equal to 1 already lie in the above disk. Therefore, it follows that all the zeros of $\mathrm{F}(\mathrm{z})$ and hence $\mathrm{Q}(\mathrm{z})$ lie in

$$
|z| \leq \frac{1}{\left|a_{0}\right|}\left[k\left(a_{0}+\left|a_{0}\right|\right)-\left|a_{0}\right|-a_{n}+\left|a_{n}\right|+2 \rho\right] .
$$

Since $P(z)=z^{n} Q\left(\frac{1}{z}\right)$, it follows, by replacing z by $\frac{1}{z}$, that all the zeros of $\mathrm{P}(z)$ lie in

$$
|z| \geq \frac{\left|a_{0}\right|}{k\left(a_{0}+\left|a_{0}\right|\right)-\left|a_{0}\right|-a_{n}+\left|a_{n}\right|+2 \rho} .
$$

Hence $\mathrm{P}(\mathrm{z})$ does not vanish in the disk

$$
|z|<\frac{\left|a_{0}\right|}{k\left(a_{0}+\left|a_{0}\right|\right)-\left|a_{0}\right|-a_{n}+\left|a_{n}\right|+2 \rho} .
$$

That proves Theorem 1.
Proof of Theorem 2: We have

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}
$$

Let

$$
Q(z)=z^{n} P\left(\frac{1}{z}\right)
$$

and

$$
F(z)=(z-1) Q(z)
$$

Then

$$
\begin{aligned}
& F(z)=(z-1)\left(a_{0} z^{n}+a_{1} z^{n-1}+\ldots \ldots+a_{n-1} z+a_{n}\right) \\
& \qquad \begin{array}{l}
=-a_{0} z^{n+1}-\left[\left(a_{0}-a_{1}\right) z^{n}+\left(a_{1}-a_{2}\right) z^{n-1}+\ldots . .+\left(a_{n-2}-a_{n-1}\right) z^{2}\right. \\
\\
\left.\quad+\left(a_{n-1}-a_{n}\right) z+a_{n}\right] .
\end{array}
\end{aligned}
$$

For $|z|>1$,

$$
\begin{aligned}
& |F(z)| \geq\left|a_{0}\right||z|^{n+1}-\left[\left|a_{0}-a_{1}\right||z|^{n}+\left|a_{1}-a_{2}\right||z|^{n-1}+\ldots \ldots+\left|a_{n-1}-a_{n}\right||z|+\left|a_{n}\right|\right] \\
& =\left|a_{0}\right||z|^{n}\left[|z|-\frac{1}{\left|a_{0}\right|}\left\{\left|a_{0}-a_{1}\right|+\frac{\left|a_{1}-a_{2}\right|}{|z|}+\ldots \ldots+\frac{\left|a_{n-1}-a_{n}\right|}{|z|^{n-1}}+\frac{\left|a_{n}\right|}{|z|^{n}}\right\}\right] \\
& >\left|a_{0}\right||z|^{n}\left[|z|-\frac{1}{\left|a_{0}\right|}\left\{\left|\tau a_{0}-a_{1}-\tau a_{0}+a_{0}\right|+\left|a_{1}-a_{2}\right|+\ldots \ldots+\left|a_{n-1}-a_{n}+\rho-\rho\right|\right.\right. \\
& \left.\left.+\left|a_{n}\right|\right\}\right] \\
& =\left|a_{0}\right||z|^{n}\left[|z|-\frac{1}{\left|a_{0}\right|}\left\{\left(a_{1}-\tau a_{0}\right)+(1-\tau)\left|a_{0}\right|+\left(a_{2}-a_{1}\right)+\ldots \ldots+\left(a_{n}+\rho-a_{n-1}\right)\right.\right. \\
& \left.\left.+\rho+\left|a_{n}\right|\right\}\right] \\
& =\left|a_{0} \| z\right|^{n}\left[|z|-\frac{1}{\left|a_{0}\right|}\left\{\left|a_{0}\right|-\tau\left(a_{0}+\left|a_{0}\right|\right)+a_{n}+\left|a_{n}\right|+2 \rho\right\}\right] \\
& >0 \\
& \text { if }
\end{aligned}
$$

$$
|z|>\frac{1}{\left|a_{0}\right|}\left\{\left|a_{0}\right|-\tau\left(a_{0}+\left|a_{0}\right|\right)+a_{n}+\left|a_{n}\right|+2 \rho\right\} .
$$

This shows that all the zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is greater than 1 lie in the closed disk

$$
|z| \leq \frac{1}{\left|a_{0}\right|}\left\{\left|a_{0}\right|-\tau\left(a_{0}+\left|a_{0}\right|\right)+a_{n}+\left|a_{n}\right|+2 \rho\right\}
$$

But those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is less than or equal to 1 already lie in the above disk. Therefore, it follows that all the zeros of $\mathrm{F}(\mathrm{z})$ and hence $\mathrm{Q}(\mathrm{z})$ lie in

$$
|z| \leq \frac{1}{\left|a_{0}\right|}\left\{\left|a_{0}\right|-\tau\left(a_{0}+\left|a_{0}\right|\right)+a_{n}+\left|a_{n}\right|+2 \rho\right\}
$$

Since $P(z)=z^{n} Q\left(\frac{1}{z}\right)$, it follows, by replacing z by $\frac{1}{z}$, that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \geq \frac{\left|a_{0}\right|}{\left|a_{0}\right|-\tau\left(a_{0}+\left|a_{0}\right|\right)-a_{n}+\left|a_{n}\right|+2 \rho}
$$

Hence $\mathrm{P}(\mathrm{z})$ does not vanish in the disk

$$
|z|<\frac{\left|a_{0}\right|}{\left|a_{0}\right|-\tau\left(a_{0}+\left|a_{0}\right|\right)-a_{n}+\left|a_{n}\right|+2 \rho} .
$$

That proves Theorem 2.

References

[1] Aziz, A. and Mohammad, Q. G., Zero-free regions for polynomials and some generalizations of Enestrom-Kakeya Theorem, Canad. Math. Bull., 27(1984), 265-272.
[2] Aziz, A. and Zargar B.A., Some Extensions of Enesrtrom-Kakeya Theorem, Glasnik Mathematicki, 31(1996), 239-244.
[3] Dewan, K. K., and Bidkham, M., On the Enestrom-Kakeya Theorem I., J. Math. Anal. Appl., 180 (1993), 29-36.
[4] Kurl Dilcher, A generalization of Enesrtrom-Kakeya Theorem, J. Math. Anal. Appl., 116 (1986) , 473-488.
[5] Joyal, A., Labelle, G..and Rahman, Q. I., On the Location of zeros of polynomials, Canad. Math. Bull., 10 (1967), 53-63.
[6] Marden, M., Geometry of Polynomials, IInd. Edition, Surveys 3, Amer. Math. Soc., Providence, (1966) R.I.
[7] Milovanoic, G. V., Mitrinovic , D.S., Rassiass Th. M., Topics in Polynomials, Extremal problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[8] Rahman, Q. I., and Schmeisser, G., Analytic Theory of Polynomials, 2002, Clarendon Press, Oxford.
[9] Zargar, B. A., Zero-free regions for polynomials with restricted coefficients, International Journal of Mathematical Sciences and Engineering Applications, Vol. 6 No. IV(July 2012), 33-42.

