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Abstract:Presented herein is the design and implementation of an sEMG-based control system for a robotic leg, 

utilizing surface electromyographic signals recorded from the quadriceps muscles. The developed system 

integrates four key functional components: (1) acquisition and preprocessing of sEMG data; (2) extraction of 

the root mean square (RMS) as a measure of muscle contraction intensity; (3) transformation of signal features 

into actuator control signals; and (4) the mechanical design of a biomimetic robotic leg. The knee joint actuator 

is controlled based on the RMS value, enabling the reproduction of natural and accurate lower limb flexion and 

extension. Initial experimental findings indicate the system's capacity for prompt and stable response to user 

neuromuscular input, suggesting its applicability in areas such as rehabilitation robotics, assistive devices, and 

human-computer interaction. 
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I. Introduction 
The domain of biomedical engineering has witnessed the escalating significance of assistive mobility 

technologies in recent years, particularly in addressing the needs of individuals with motor impairments and 

those undergoing rehabilitation. Among the diverse biological signals employed in assistive systems, surface 

electromyography (sEMG) has emerged as a modality of considerable promise. sEMG, a bioelectrical signal 

resulting from the activation of motor units within skeletal muscles, facilitates non-invasive recording via 

surface electrodes applied to the skin [O. Phinyomark, P. Phukpattaranont, C. Limsakul, 2012; R. Merletti, D. 

Farina, 2016; M. Kim, H. Jo, K. Kong, 2019]. This technique enables real-time monitoring of muscular activity 

and the inference of user movement intentions, rendering it applicable to rehabilitation, intelligent prosthetics, 

exoskeletons, and human-machine interfaces (HMIs) [P. Zhou, B. Lock, X. Zhang, 2018; P. Konrad, 2006]. 

The integration of sEMG signals for the control of robotic and assistive devices has inaugurated novel 

pathways for the development of systems capable of supporting individuals with disabilities during 

rehabilitation and augmenting daily mobility. These applications are predicated on the capacity of sEMG signals 

to precisely reflect muscle contractions, thereby allowing mechanical systems to emulate corresponding human 

movements [J. Xie, Q. Wu, M. Wei, 2018]. This advancement holds particular importance for intelligent 

prosthetic limbs, wherein users can exert control over artificial appendages utilizing their own bio-signals, 

leading to a more natural and intuitive interaction compared to traditional control paradigms [J. C. P. de 

Azevedo, G. F. Teixeira, 2014; J. Park, J. S. Lee, D. H. Lee, 2013] 

However, integrating sEMG signals into robotic control systems presents several major challenges, 

primarily due to the signal's low amplitude (ranging from μV to mV), susceptibility to noise, and variations 

caused by physiological conditions, electrode placement, and mechanical states of the body (R. L. S. S. J. R. D. 

Ali, 2014). These issues complicate the development of accurate and efficient control systems. A key 

requirement is the implementation of robust signal processing algorithms capable of reliably extracting relevant 

features from sEMG signals (T. V. B. Nguyen, 2017). 

Within the human musculoskeletal system, the knee joint plays a critical role in supporting body 

weight, maintaining balance, and enabling locomotion. Major muscle groups involved in knee flexion and 

extension include the rectus femoris, vastus lateralis, and biceps femoris (M. D. Legrand, 2013) (M. J. Keeler, 

2019). Consequently, sEMG signals obtained from the thigh region can provide accurate insights into user 

movement intent, serving as a valuable data source for actuating robotic mechanisms. Analyzing these signals 

not only improves motion classification accuracy but also facilitates the development of biologically inspired 

control systems that directly interface with the human body. 
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Within this framework, the present study introduces a robotic leg control system engineered to replicate 

the flexion-extension kinematics of the knee joint, employing the sEMG as the principal control modality. The 

system architecture comprises several fundamental modules: an sEMG signal acquisition and preprocessing 

unit, a root mean square (RMS) feature extraction module, a feature-to-control signal mapping unit, and a 

robotic leg structure designed with biomimetic principles. The primary objective of this research is the 

development of an integrated bio-control system with potential applications in rehabilitation, assistive mobility, 

and human-robot interaction. This endeavor aims to yield practical solutions for aiding individuals with 

disabilities while concurrently enhancing real-world human-machine synergy (T. V. B. Nguyen, 2017) (Y. Liu, 

W. Gao, Z. Li, 2017). 

 

II. Materials And Method 
The objective of this research is to develop and optimize a control system for a robotic leg that 

emulates the flexion–extension movement of the human knee joint, using sEMG signals as the primary control 

input. The experimental workflow includes the following stages: acquisition of sEMG signals, signal 

processing, feature extraction, control signal conversion, mechanical design, and system testing and evaluation. 

Each stage is carefully designed and executed to ensure the precision and effectiveness of the control system. 

 

2.1. sEMG Signal Acquisition 

In this study, sEMG signals are recorded from the quadriceps femoris muscle group, which plays a 

primary role in knee flexion and extension. This group comprises three major muscles: rectus femoris, vastus 

lateralis, and vastus medialis (Rahmani-Nia, F., Farzaneh, E., Damirchi, A., Majlan, A. S., & Tadibi, V., 2013). 

The selection of this muscle group was based on two key criteria: (1) their substantial contribution to controlling 

the amplitude and speed of knee joint motion, and (2) the feasibility of non-invasive sEMG recording from the 

skin surface due to their accessible anatomical location. The rectus femoris is the only muscle in the quadriceps 

group that spans both the hip and knee joints, contributing to hip flexion and knee extension. Meanwhile, the 

vastus lateralis and vastus medialis are primarily responsible for knee extension. The coordinated activation of 

these three muscles provides comprehensive insight into muscular dynamics during knee joint flexion and 

extension. This choice is further supported by previous studies that have demonstrated a strong correlation 

between quadriceps muscle activity and both knee joint torque and angle. 

To optimize sEMG signal acquisition, wet surface electrodes are employed. These electrodes offer a 

stable electrical interface between the skin and recording device, minimizing impedance and enhancing signal 

quality. Electrodes were placed in accordance with standardized electromyographic and anatomical guidelines, 

aligned along the longitudinal axis of the muscle belly. The inter-electrode distance (IED) was standardized to 

optimize detection of motor unit action potentials (MUAPs) while minimizing crosstalk from adjacent muscles. 

Prior to electrode placement, skin preparation—including shaving and cleaning with alcohol—was rigorously 

performed to ensure reliable and high-quality signal acquisition. 

The sEMG data were collected while subjects performed knee flexion and extension tasks at three 

distinct levels of muscle force: light, moderate, and strong. These levels were designed to generate sEMG 

signals with varying amplitudes, thereby reflecting the muscle activation levels of the quadriceps under different 

motor demands. The recorded sEMG signals had amplitudes ranging from 10 μV to 5 mV and a frequency 

bandwidth of 10 Hz to 500 Hz, which are consistent with the physiological characteristics of skeletal muscle 

activity. 

The sEMG acquisition system was designed to accurately capture low-amplitude muscle signals. A 

signal amplification circuit utilizing the AD620 instrumentation amplifier was implemented, providing a gain of 

approximately 2000 to 3000 times to enhance signal amplitude and suppress environmental electromagnetic 

noise. The sampling frequency was set at 1 kHz to ensure adequate temporal resolution for signal analysis. 

Electrodes were firmly secured to the skin surface, and sufficient moisture was maintained to ensure stable 

contact, further minimizing environmental interference that could degrade signal quality. 

 

2.2. sEMG Signal Processing 

The sEMG signals collected from skin-mounted electrodes are typically of very low amplitude, ranging 

from a few microvolts (μV) to a few millivolts (mV), and are highly susceptible to various forms of noise, 

including motion artifacts, electromagnetic interference, and crosstalk from nearby muscles. To ensure that the 

signal is sufficiently accurate and stable for control applications, signal processing is a crucial step that enhances 

the signal-to-noise ratio (SNR) and eliminates unwanted components. The proposed signal processing system in 

this study consists of three main functional blocks: differential amplification, band-pass filtering, and 

rectification. 
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2.2.1. Signal Amplification 

The initial stage of sEMG signal processing utilizes a differential amplifier circuit based on the AD620 

integrated circuit—an instrumentation amplifier known for its high performance, low noise, stability, and 

excellent common-mode rejection ratio (CMRR). The AD620, as shown in Figure 1,is selected specifically for 

its capability to reject common-mode noise, particularly power line interference (50/60 Hz), which is essential 

when dealing with low-amplitude physiological signals. 
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Figure 1: Signal Amplification Circuit using AD620 

 

The amplification gain was set between 2000 and 3000, calculated based on the spectral and kinematic 

characteristics of sEMG signals. This level of gain ensures the signal reaches an optimal amplitude for 

subsequent processing stages without introducing distortion. The gain of the AD620 circuit is determined by the 

following formula: 

 

W
 

g

49.4 [k ]
A 1

R
 (1) 

 

Where: 

● A is the amplification gain 

● Rg  is the gain-setting resistor 

 

This formula enables precise gain adjustment by selecting appropriate resistor values for feedback and 

gain control, ensuring that the amplified signal amplitude is suitable without compromising signal integrity. 

In addition, the use of a differential amplifier enhances the output signal’s SNR by effectively 

suppressing unwanted noise sources, such as motion artifacts and electromagnetic interference, while 

maximizing sensitivity to weak EMG signals. Design considerations such as proper impedance matching, PCB 

layout optimization to reduce ground loop interference, and electromagnetic shielding were also implemented to 

further improve signal quality.Given these characteristics, the AD620 amplifier is well-suited for sEMG 

amplification in physiological applications, providing robust signal enhancement while maintaining high 

accuracy and reliability throughout the signal processing pipeline. 

 

2.2.2. Band-Pass Filter 

The band-pass filter circuit designed in this study aims to eliminate unwanted noise from the sEMG 

signal while retaining only the frequency components within the critical range of 2 Hz to 480 Hz—where the 

essential information of the sEMG signal resides. sEMG signals, which are typically low in amplitude and 

highly susceptible to interference from various sources, must be filtered to enhance signal quality and ensure 

accuracy in subsequent stages such as rectification and feature extraction. 

The cutoff frequencies for the filter are selected based on the spectral characteristics of the sEMG 

signal. Since the majority of relevant sEMG information lies within the 2 Hz to 480 Hz range, the lower cutoff 

frequency is set at 2 Hz to eliminate low-frequency noise such as motion artifacts. The upper cutoff frequency is 

set at 480 Hz to suppress high-frequency noise from sources such as AC power interference (50/60 Hz) and 

electromagnetic disturbances. These frequency limits are crucial for preserving the signal's informative 

components while minimizing environmental noise. 

To implement this band-pass filter, the circuit utilizes resistors (R), capacitors (C), and operational 

amplifier (op-amp) integrated circuits. The values of the resistors and capacitors are determined using standard 

formulas for high-pass and low-pass RC filters. The cutoff frequency fcf_cfc is calculated using the formula: 
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c

1
f

2 RC



 (2) 

 

Where: 

● fc  is the cutoff frequency 

● R is the resistance 

● C is the capacitance 

 

Using this formula, appropriate R and C values can be selected to design a filter with desired cutoff 

frequencies. Specifically, the lower cutoff frequency is set at fc1=2 Hz, and the upper cutoff frequency is set at 

fc2=480 Hz, ensuring that the sEMG signal remains within the necessary frequency band. 
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Figure 2: Band-pass filter circuit 

 

To design a high-pass filter with a 2 Hz cutoff and a low-pass filter with a 480 Hz cutoff, suitable R 

and C values must be selected. For example, using R=100kW for the low-pass filter C=0.8 μF for the high-pass 

filter, the resulting cutoff frequencies can be accurately achieved. 

c 6

1 1
f 2 Hz

2 RC 2 .100000.0,8.10
  

 
 (3) 

 

Careful selection of these component values is essential to ensure precise cutoff frequencies and avoid 

loss of important sEMG signal components. 

The operational amplifier (IC) used in the band-pass filter must have high stability, low noise, and 

operate effectively across the 2 Hz to 480 Hz range. In this study, the LM358 op-amp is chosen for its reliable 

performance and suitability for low-amplitude bioelectrical signals. The LM358 maintains signal integrity in 

physiological applications, where high accuracy and reliability are critical. 

 

2.2.3. Rectifier 

The half-wave rectifier circuit employs the 1N4148 diode to convert the AC sEMG signal into a DC 

signal by preserving only the positive half-cycles and eliminating the negative ones. The 1N4148 diode is 

selected for its fast switching speed and low forward voltage drop (approximately 0.7V), which is ideal for 

handling low-amplitude sEMG signals (see Figure 3). 

In this rectifier circuit, the 1N4148 diode is connected in series with the sEMG signal. When the input 

signal is positive, the diode conducts, allowing the signal to pass. When the signal is negative, the diode blocks 

it, effectively removing the negative half of the waveform. This results in a unidirectional signal suitable for 

further processing, such as feature extraction. 



Development of an sEMG-Driven Control Architecture for a Robotic Leg Prosthesis 

51 

_

+

R1C1

C2

R2

+5V

-5V

Vout

LM358

+

+

_

+

Vin1

Vin2

+5V

-5V

1
2

3
4 5

6

7

8 AD62010kW 

Vref

D1

 
Figure 3: sEMG signal processing circuit 

 

2.3. Feature Extraction from sEMG Signals 

In this study, the Root Mean Square (RMS) feature extraction method is employed to evaluate the 

intensity of the sEMG signal, providing insights into muscle activity levels during robotic leg control. The 

Sliding Window Segmentation technique is used to divide the sEMG signal into short time windows, enabling 

continuous RMS calculation for each segment. This approach allows for tracking signal variations over time and 

minimizes the effect of noise. 

 

2.3.1. RMS Computation Principle 

The RMS value of the signal x(t) is computed using the following equation: 

N
2

i 1

1
RMS(t) x (i)

N


   (4) 

Where: 

● x(i) is the signal value at sample i 

● N is the number of samples within the window 

 

The RMS value represents the signal's amplitude at a given time and allows monitoring of intensity 

variations over time. This helps assess the user's muscle activity level. RMS smoothing also reduces 

insignificant fluctuations, creating a more reliable feature for further analysis or control algorithms. 

 

2.3.2. Sliding Window Segmentation Technique 

Sliding Window Segmentation divides the sEMG signal into fixed-length windows of size W, each 

containing N signal samples. The window moves through the signal with a step size S, selected to ensure 

adequate temporal resolution. 

 

1) Signal segmentation: The sEMG signal is split into fixed-length time windows, each containing a subset of 

NNN data samples. RMS is computed for each window 

2) Window shifting: The window slides along the signal by step size SSS, generating a sequence of RMS 

values reflecting temporal signal changes 

3) RMS feature extraction: The RMS values of each window provide insight into muscle activity over time, 

capturing changes in contraction levels or muscle engagement relevant to robotic control 

 

2.3.3. Advantages of Sliding Window Segmentation 

Sliding Window Segmentation offers several benefits in sEMG signal analysis: 

● Real-time signal tracking: It enables continuous monitoring of signal variations over time, helping detect 

changes in muscle activity. 

● Noise reduction: Segmenting the signal into short windows limits the impact of transient noise within each 

segment. 

● Adaptability to rapidly changing signals: Well-suited for sEMG's fast-varying nature in both amplitude and 

frequency, enhancing analytical accuracy. 

 

2.3.4. Application in Robotic Control 

The RMS feature extraction method combined with the Sliding Window Segmentation technique can 

be effectively applied in robotic control systems. RMS values derived from segmented sEMG signals serve as 
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input parameters for control algorithms—such as those used to modulate robotic leg movement based on the 

user's muscle activity level. 

 

2.4.Signal Features to Control Signals 

In this study, control signals are generated from the RMS features of surface EMG (sEMG) signals 

through a linear mapping process. The objective of this process is to convert the muscle activation intensity-

represented by the RMS value-into a corresponding motor rotation angle, thereby producing motion that reflects 

the user's muscle effort.  

The linear mapping formula is described as follows: 

 a* RMS b (5) 

 

Where: 

● θ [degree]is the motor rotation angle 

● RMS is the root mean square value of the sEMG signal 

● aand b are calibration coefficients determined such that the motor's rotation accurately reflects the user’s 

level of muscular activity. 

 

This mapping enables a linear relationship between muscle activation levels and motor movement, 

ensuring that the robotic leg performs smooth and precise motions that correspond to the user's muscle 

contractions. The resulting control signal is then used to drive the motor, actuating the robotic leg in accordance 

with the user's intended movement. 

 

2.5. Mechanical Design of the Robotic Leg and Functional Evaluation 

In this research, the mechanical design of the robotic leg was developed with the goal of replicating the 

natural movement of a human leg, while meeting requirements for accuracy and flexibility in control via sEMG 

signals. The robotic leg comprises key components such as the knee joint, ankle joint, and connecting segments. 

All components are designed to withstand the forces and torques generated during operation (see Figure 4). 

 

 

Figure 4: Actuation mechanism of the robotic leg 

 

The knee joint is actuated by either a stepper motor or a servo motor, depending on application needs. 

This motor produces angular movements of the joint in response to control signals derived from processed 

sEMG data, allowing for rhythmic and natural joint motion. To enhance adaptability to users and reduce 

mechanical stress, the joints are designed with adjustable parameters tailored to individual users. 

The ankle joint is incorporated to facilitate dorsiflexion and plantarflexion, supporting standing and 

walking while reducing user fatigue. To improve structural stability, components such as the foot base are 

constructed from high-durability, wear-resistant materials, enabling the leg to operate reliably over extended 

periods. 
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Moreover, optimization of weight and portability is a crucial factor in the mechanical design. It 

minimizes stress on moving parts and enhances the system’s performance. Joint and linkage designs are 

calculated to ensure flexibility, ease of control, and maintainability. 

All mechanical parts are designed based on mechanical engineering principles and specific technical 

criteria, ensuring effective, safe, and synchronized operation with control signals from the sEMG processing 

system. 

 

III. Results And Discussions 
This section presents experimental results and performance analyses of the sEMG signal acquisition 

and processing system, aiming to verify its feasibility in controlling a robotic leg that mimics flexion–extension 

movements. The system was tested using signals collected from human thigh muscles under various movement 

conditions. 

 

3.1. Evaluation of the Signal Processing Circuit 

Upon acquisition from surface electrodes, sEMG signals typically exhibit very low amplitude (0.1–5 

mV) and are often contaminated by motion artifacts, power-line interference (50/60 Hz), and other 

electromagnetic noise. A band-pass filter circuit (2–480 Hz) was designed to effectively remove unwanted noise 

components. The low-cut frequency of 2 Hz eliminates low-frequency motion artifacts, while the high-cut of 

480 Hz suppresses high-frequency noise. Frequency spectrum analysis before and after filtering showed that 

out-of-band noise was reduced by more than 20 dB, thereby improving the signal-to-noise ratio (SNR) before 

further processing. Figure 5 illustrates the sEMG signal wave forms after retifiying process. As shown, the half-

wave rectifier circuit using a 1N4148 diode performed reliably, converting the AC sEMG signal into a unipolar 

signal suitable for RMS feature extraction. The rectified signal exhibited minimal distortion and accurately 

reflected muscle activation over time. 

 
Figure 5: Processed sEMG Signal 

 

3.2. RMS Feature Analysis and Correlation with Muscle Activity 

The RMS feature extraction algorithm expressed in (4) employed a sliding window segmentation 

method to ensure real-time responsiveness. A window length of 200 ms with a 50 ms step was used to balance 

time resolution and signal stability. 

 

3.3. Mapping RMS Features to Control Signals 

The computed RMS values were linearly mapped into control signals for the stepper motor’s rotation 

angle, simulating the knee joint’s flexion-extension motion. The relationship is defined in (5). Experiments with 

varying muscle contractions showed that the knee joint's angular range shifted from approximately 10
0
 (minimal 

contraction) to 75
0
 (maximum contraction), closely mimicking natural knee flexion–extension. 

 

3.4. System-Level Evaluation on Robotic Leg Model 

The complete system was integrated and tested on a robotic leg prototype with a stepper-motor-driven 

knee joint. Trials involving three voluntary participants under varying contraction conditions demonstrated rapid 

system response (<150 ms latency) and high angular accuracy. The average angular deviation between desired 

and actual positions was 4.2
0
, with a standard deviation of less than 3

0
, confirming the system’s sensitivity to 

muscle activity levels and suitability for rehabilitation control applications. 
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IV. Conclusions And Future Works 
This study detailed the design, implementation, and experimental validation of a comprehensive system 

for the acquisition, processing, and utilization of surface EMG (sEMG) signals to govern the motion of a robotic 

leg. The system architecture incorporates critical functional modules including: signal amplification, band-pass 

filtering, rectification, root mean square (RMS) feature extraction, and linear mapping to stepper motor control 

signals.Experimental findings corroborated the system's capacity for stable sEMG signal acquisition, effective 

attenuation of extraneous noise, and accurate representation of muscle activation intensity through the RMS 

feature. The implementation of sliding window segmentation ensured rapid, low-latency responses suitable for 

real-time control applications.The robotic leg platform, integrated with the sEMG-based control system, 

successfully executed knee flexion-extension movements congruent with the user's muscular activity. Motion 

accuracy remained consistent with minimal deviation, highlighting the system's potential for applications in 

functional rehabilitation, exoskeleton robotics, and human-machine interfaces. 

Future research directions may involve the expansion of the system's control capabilities to encompass 

multiple degrees of freedom, the application of machine learning algorithms to improve motion classification 

precision, and the integration of wireless communication to enhance device portability. 
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