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Abstract: This work addresses the Kidney Transplant Problem (KTP) with priority in the care of organ 

receptor patients and proposes a resolution methodology based on operational research techniques. In this 

case, the main objective is to perform as many transplants as possible with the lowest surgical and mobility 

costs, considering the geographical positions of donors, recipients and hospitals, as well as surgical costs 

accredited hospitals to perform kidney transplant surgeries. The problem meets the characteristics imposed by 

the Unified Health System (SUS) of the Health Ministry from the Federative Republic of Brazil. Thus, our work 

aims to reduce the waiting time of the queue of these patients who need a kidney transplant and give an 

optimized planning to perform this task. A literature review was made for the specific problem and we found the 
Kidney Exchange Problem (KEP) with different characteristics from the KTP. It developed for the specific 

problem: a mathematical model; a set of instances; and a metaheuristic, based on Genetic Algorithm (AG), 

applies it to solving the problem. The results of the AGare presented with great degree of satisfaction. 
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I. INTRODUCTION 
According to the Brazilian Institute of Geography and Statistics (IBGE in Portuguese) [1], on July 1, 

2017, the Brazilian population was 207,660,929 of which10,565 people entered the waiting list for kidney 

transplantation that year. Unfortunately, 1,176 of these individuals died, either due to complications directly 

linked to the organ in question or by other causes. The year ended by accounting for 21,059 active patients 

within the waiting list for organ transplantation under analysis. This year, only 5,929 kidney transplants 

performed [2]. The low number of donors in contrast to those of recipients can be considered an indicator of 

social taboo among the various countries. It can be mentioned China, which even with more than 18% of the 

world's population, is not among the top on the list of countries with the highest rates of organ donations as can 

be seen in [3-5]. In the case of this country, it is believed that this is due to religious beliefs. On the other hand, 

countries such as France, Spain, Belgium and Portugal, after experiencing the deaths of hundreds of their 

inhabitants due to the lack of donors, perceived the alarming state that is the scenario and the discrepancy 
between the high number of inhabitants in contrast to number of effective donors. To resolve this problem, new 

laws arose, unlike Brazil, indicating that every person becomes organ donor after his death from brain death. 

Thus, the need for the person to inform the family his willingness to become a donor. If the person does not 

want to be a donor, he should inform the non-interest in the donation ([6-7]). 

It is known that in Brazil, several people die in the waiting line of the Unified Health System (SUS in 

Portuguese) due to the slowness to perform transplantation. The Brazilian government realized that some 

transplants were not done by geospatial logistical difficulty between donors and compatible recipients in a 

timely manner. Thus, he sanctioned a law that determines a support of the Brazilian Air Force (FAB in 

Portuguese) in the logistics of interstate transplants [8]. Although the number of donors has increased over the 

years, the difference between the number of effective donors and receivers still makes the scenario alarming. 

However, it is positive to see that some countries have been uneasy about organ donation. Thus, the scientific 

community has studied methods to increase the quality of life of patients who are in the final stage of the disease 
and who need organ donation. However, one of the main methods of solving this problem is still transplantation, 

as shown in [9-14]. It is important to emphasize that thanks to scientific advances, when comparing the drugs 

used for post-transplants of 1987 with the current ones, an average survival of 10 years of the transplanted organ 

in the patient was compared, as can be seen in [9]. Thus, if before the transplanted patient lived on average 5 

years with the same graft, today, one lives on average 15 years. The organ taken from a living donor provides 

significantly longer-term survival when compared to the organ from a deceased donor, according to [10]. 

One of the main motivations for solving the problem is to exchange donor-recipient pairs and lower 
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costs for public coffers. This particular problem, in the way we are proposing its resolution, is little addressed on 

the national scene. It is interesting to create insight into how the process of renal transplantation can impact 

public coffers. For this, it is important to highlight that the Brazilian transplant program is one of the largest in 
the world, 95% of which is funded by the SUS and has a logistics of organ allocation that does not take into 

account social, racial privileges, etc., as described in [9-15].In Portugal, an average of 25,000 EUR per patient is 

spent per year [16]. In the USA, 85,000 USD per year is spent on dialysis per patient, while 120,000 USD is 

spent on transplants with an additional 20,000 USD per year on immunosuppressive drugs, according to [17]. 

Also, in Brazil, according to [18], renal transplantation of the deceased donor generates an economy per patient 

of 37,000 BRL and 74,000 BRL in relation to hemodialysis and peritoneal dialysis, respectively. Regarding 

renal transplantation of living donor, the savings are even greater: 46,000 BRL and 82,000 BRL in relation to 

hemodialysis and peritoneal dialysis, respectively. This result, combined with survival and quality of life 

analyses, can characterize kidney transplantation as the best alternative from a financial and clinical point of 

view, assisting in the formulation of public policies related to organ transplants in the Brazil. 

It is important to emphasize that in Brazil, in case of chronic disease or failure of one or more organs, 
Brazilian laws of nº. 9,434 and 10,211 and Art. 13 of the Civil Code provide for the possibility of organ and 

tissue transplantation. Still in case of jurisprudence, it is interesting to know that, in case of family affinity 

between donor and recipient, there may only be transplantation in case of consanguineous kinship up to fourth 

degree, even if the donor and recipient are compatible. However, in order to have this procedure, a judicial 

authorization must be requested to proceed with the surgery, because the law only provides, for this case, the 

possibility of the spouse. Thus, an authorization will be requested from the Ethics Committee of the hospital 

where the surgery will be performed. It is also necessary for a law judge and the State Transplant Center to 

release the procedure. These are measures that, from an analytical point of view, tend to increase the waiting 

time in the transplant queue of the Unified Health System. Thus, to minimize the waiting time and relieve the 

SUS, a new methodology was proposed for optimizing the logistics of kidney transplantation in Brazil, where, a 

priori, the present work can also be applied to other types of organs for transplants. 

As shown above, it is perceived that the problem is worldwide not only in health, but at an economic 
level, also described in [17]. The population growth determines an increase in demand for transplants. If the 

country does not have public policies that further stimulate dialysis transplantation, this will directly impact its 

economy with a view to high spending to keep a person on dialysis in favor of transplantation. Thus, with the 

population increase over time, some countries will tend to need more transplantation. Some continents, such as 

Europe, because they have greater ease of communication between member countries, may even send a patient 

or donor to a member country for transplantation, with the benefit of reducing costs of public coffers. Thus, a 

logistical problem is created that can be solved with clear knowledge and objectives of the operational research 

area. 

The current ways of solving the problem do not meet the great demands. Current mathematical 

formulations cannot find the best donor for the patient in very long chains in a timely manner. With the time of 

ischemia being a constant for each type of organ and with the growth of the number of patients following the 
tendency to be higher than the number of donors. Finding the best donor for the patient in a timely manner is a 

major challenge and will be one of the focuses of this work. Therefore, in view of the above and the negotiations 

to resolve the consequences of the low number of donors in a given spatial region, a resolution method for the 

specific problem of finding the best donor-recipient pair taking into account their spatial location and surgical 

operating costs, priority care and blood compatibility, based on existing information and registered in a 

database. 

The main objective of this work is to present and characterize the problem of specific kidney 

transplants with a resolution methodology, where it is intended to find the best sequence of recipients 

compatible with available donors respecting the restrictions of the problem, such as geographic proximity linked 

to cost, priorities in service and other restrictions. For this to happen, a simulation of the location of hospitals, 

donors and recipients was randomly done in certain regions of the Brazilian territory. Although the actual data 

have been unsuccessfully requested. With this data, we hope to find the best donors for kidney recipients in a 
timely manner, checking the shortest distances, costs and expenses to be traveled to perform transplants. 

 

II. DESCRIPTION OF THE PROBLEM 
Brazil, like other countries, has laws regulating organ transplantation. However, there are only two 

donation methods: deceased donor or living donor. In case the graft comes from a deceased donor and has his 

brain death proven, by at least two different doctors and specific tests, the deceased donor will be placed on the 

SUS list.  In case you are a living donor, you will undergo tests that attest to your pre- and post-transplant 

health. In case of end-stage kidney disease, the recipient must register on the official waiting list for a transplant 

and, after the compatible donor is found, the transplant is performed. In addition to the difficulties provided for 
in Brazilian legislation as previously stated, there are technical incompatibilities that will be addressed below. 
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2.1 Blood 

It is important to realize that there are three main conditions for organ transplantation. One of them is 

blood typing. Blood typing is one of the main factors that influence the compatibility between donor-recipient. 

A better view can be seen in Table 1. In this table, the compatibility of each donor-recipient pair with their 

blood type can be visualized. For example, a blood type "A" person can receive blood from people type "0" and 

"A" and can donate to "A" and "AB". 

Table 1. Blood transplant groups (donation and reception). 

Blood groups Can receive organ of type Can donate to type person 

O O O, A, B, AB 

A O, A A, AB 

B O, B B, AB 

AB O, A, B, AB AB 

 

Another condition is the typing of Human Leukocyte Antigens (HLA) or Histocompatibility Antigens. 
These antigens, which stay in leukocytes, read every cell in our body to know if that cell really is from our 

organism or not. If it isn't, she'll be attacked.  Each person's HLA system is a combination of six antigens: 2 

HLA-A antigens, 2 HLA-B antigens and 2 HLA-DR antigens. The last primary condition is the Lymphocyte 

Cross-test or also called Cross-Match. In this test, the donor and recipient's blood is mixed to verify the 

possibility of a possible rejection of the organ to be transplanted. If the test is positive, there are receptor 

antibodies that will act against donor antigens. This means that the organ will be rejected after transplant. These 

last two conditions were not taken into account in our study due to lack of consistent information. 

 

2.2 Logistic 

The problem of paired kidney transplantation has a logistical difficulty, as described in [13,19-20]. 

Surgery is required of 4 rooms in a hospital. One for the removal of the donor organ of the pair i and the other 

for the implantation of the graft in the patient of the pair j, while in two other rooms are done simultaneously the 

same procedures with the other donor-recipient group. Surgeries have to be done simultaneously. In this way 

you have the Kidney Paired Donation (KPD) or cross-transplant of kidneys, where the concurrency of events is 

mandatory. In [2], it was reported that there are cities with a higher number of patients and few donors, others 

with a higher number of donors, but that they do not require a high demand from donors. Due to the great 

territorial extension of Brazil, there are organs that do not find the most compatible receiver. For this, the 
Brazilian government promulgated the authorization of aircraft for transplantation as described earlier in Section 

1, given the distances to be traveled by donors and recipients in a continental country. 

The following are described several models found of the problem with their own characteristics: 2-way 

KPD, suggests that donor 1 donate to receptor 2 and donor 2 donates to receptor 1; k-way KPD, suggests the 

same procedure as the above item, but with higher numbers of chains; Domino Paired Donation (DPD) suggests 

the inclusion of an altruistic A donor in the system and penultimate pairing of the cycle provide an inclusion in a 

W receiver from the SUS waiting list; Non Simultaneous Extended Altruistic Donor (NEAD), suggests the 

beginning of the chain provided by the insertion of altruistic donor to the cycle and, at the end of this first round 

of combinations, the last donor begins a new cycle. This last donor is called the "bridge donor" because it will 

be the connection between chain n with chain n+1; listex change, indicates that the patient in the KEP program 

will have priority to receive the organ, which would initially go to the SUS receiver and will be used for the 
beginning of a new chain with the obligation to return to the SUS at the end of the chain; 

Altruisticallyunbalanced 2-way KPD, indicates that pair 1 has compatibility, par 2 has incompatibility, however, 

as donor 1 is compatible with receptor 2 and donor 2 is compatible with receptor 1, transplants can be 

performed; Desensitization in 2-way KPD, suggests that receptor 2 will undergo a desensitization process to 

receive donor organ 1 and, as well as a "Simple Cycle Chain", donor 2 will donate to receiver 1. 

The main focus of our work is the search not only of the most compatible donor, but that it is also the 

closest donor to the surgery hospital along with its recipient, and with the lowest surgical cost. Thus, unlike 

existing literature, we propose an innovative method that aims to revolutionize the "modus operandi" of the SUS 

and we named Kidney Transplant Problem (KTP), where an instance of this problem takes into account: a set D 

of donors; an R set of receivers; and an H set of hospitals. All these sets with their georeferenced locations. The 

purpose of the specific problem is to look for the recipient-donor-hospital triad that has the lowest operational 
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cost (surgical and mobility), and which generates the largest number of transplants. 

Here, the data are described to represent an instance of the specific problem: H={1, 2, 3, ..., nh} is the 

whole of hospitals, where nh is the total number of existing hospitals; R={1, 2, 3, ..., r} is the set of receptors, 
where r is the total receivers; D={1, 2, 3, ..., d} is the total donors, where d is the total donors; DHih is the 

distance from donor i to hospital h; RHjh is the distance from receiver j to hospital h; CHh is the surgical cost of 

transplantation in hospital h; W = Max(CHh) + Max(DHih) + Max (RHjh) represents the highest transplant cost; 

Zp is the total receivers with priority type p=1, 2, 3, ..., k; Wp represents the weight of the transplant for the 

priority recipients of the type p=1, 2, 3, ..., k, calculated as follows: Wk = W; Wp = (Zp+1 + 1) × Wp+1, para p=(k-

1), (k-2), ..., 3, 2, 1. 

Receptors with priority in the care of type p=1 indicates that they have priority in transplants to be 

performed on the other recipients with priority other than 1. Similarly, receptors with p=2 have priority in 

transplants in relation to type 3, 4, ..., k, and so on. In this type of problem, the tendency is to allocate first 

donors to receivers with priority 1, then those with priority 2, and so follows. Suppose we have an instance with 

10 receivers, p ranging from 1 to 3 and W=100: 
 

Receptor 1 2 3 4 5 6 7 8 9 10 

Priority 1 1 2 2 2 3 3 3 3 3 

 

Therefore, the weight of transplantation for each recipient with their proper priority is given by: W3=W=100; 

W2=(Z3 + 1) × W3 = (5 + 1) × 100=600; W1=(Z2 + 1) × W2 = (3 + 1) × 600=2400. The distance DHih e RHjh are 

calculated based on the georeferenced positions of donors, recipients and hospitals. The following mathematical 

model for KTP was developed by us: 

                                                                   (1) 

Subject to:                            
                                                     (2) 

                      
                                            (3)  

                      
                                            (4) 

                                                                 (5) 

                                                                 (6) 

                       
                                           (7) 

                       
                                          (8) 

                    
                                            (9) 

                                                               (10) 

    whit        
                                                                    

           
  

The objective function of the mathematical model, described in (1), determines the maximum value for 

performing the highest number of transplants to be performed, respecting the compatibility and priority of care, 

with the lowest surgical cost and mobility of donors and recipients to hospitals for transplants. The best donor 

and the best hospital are defined for each recipient, who will do the transplant, based on the lower value we 

want to subtract from the first sum. This value represents exactly the surgical cost and mobility costs of the 

recipient and donor to the hospital where the transplant will be carried out. The groups of restrictions of types 

(2) to (5) represent the blood donation compatibility for each blood type of each receptor.  Additionally, these 

restrictions determine that each receiver can only receive a maximum of one donation. The sets R0, RA, RB e RAB 

form a partition of the R set based on the blood type of each receptor. Similarly, set D was partitioned into D0, 
DA, DB e DAB. The groups of restrictions of types (6) to (9) represent the blood donation compatibility for each 

blood type of each donor. In addition, these restrictions determine that each donor can only make a maximum of 

one kidney donation. In (10) you have the range of values for the problem decision variables according to their 

definitions. The mathematical model has r×d×nr variables and r+d restrictions, that is, it is a complex model in 

the number of variables and simple regarding the number of restrictions, when compared to the total number of 

variables. The following is the genetic algorithm proposed to be applied in solving the problem without making 

the use of mathematical programming. 
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III. THE GENETIC ALGORITHM 

The algorithm proposed in this work aims to find the best sequence of receptors that takes into account 

their geographical locality, priority of care, blood compatibility with the donor, geographical location of donors 
and hospitals and the surgical costs of hospitals. The components used in the construction of our genetic 

algorithm are given as follows: 

i) The structure of a solution s is given as a permutation of set R, where the order of individuals in the 

permutation determines the allocation of a compatible donor that is still available to it. In this structure, 

generally the first positions must be constituted by the receivers of priority 1, then the receptors of priority 2, 

and so on. Not taking into account this fact generates solutions with technical unfeasibility of the specific 

problem, where a higher priority receiver may be moving ahead of another with better priority than his. Leaving 

this receiver without a transplant when he should be met by his priority. 

ii) The individuals are all evaluated by using Equation (1), where to calculate the cost of a solution s takes 

into account the weight of the transplant, the lower cost of the operation of the transplant and the distances 

traveled by the recipients and donors to the hospitals where the transplants will be performed. Based on the 
solution s, initially an available and compatible donor is sought in set D, these donors found that donor b and 

hospital t had the lowest operational cost to perform for transplanting the recipient s(1). Select this donor and the 

hospital for the s(1) receptor let and the b donor unavailable for future donations. Compute the cost of this 

operation in variable f(s), conform the objective function of the mathematical model, and also compute the 

actual problem cost of the specific in a variable v(s)=RHs(1)t + DHbt + CHt. The allocation proceeds in the same 

way for the other receivers in the solution s, from the second position, following the order given in s. The 

process stops when this procedure was also performed for the last receiver in the solution s, in this case the 

receiver s(r). In the end, the suits (recipient, donor, hospital) are included, indicating who is the donor who will 

participate in the recipient's transplant in the specified hospital; the real value of transplants; and the value of the 

objective function of the problem specific to the solution presented. The best solution to be presented by the 

method is the one with the highest value in the objective function. 

iii) The generation of the initial population is the main criterion to deal with the diversification. A set of 
NPOP initial individuals or chromosomes form an initial population, where NPOP represents the population 

size and this value was egual to 50 individuals. The initial population was composed of each individual starting 

with i=1, 2, ..., r and then this individual is transformed into his symmetrical. For example, for r=4, one 

individual <3214> has its symmetric being <2341>.That is, the sum of each position of the two individuals is 

equal to r+1.The initial population takes the best individual NPOP from the 2r generated. 

iv) The selection strategy for crossover and mutation is made with all individuals of the population. 

v) Crossover is a genetic operation to generate a new sequence (i.e., child) from its parent strings. It has a 

great influence on the performance of genetic algorithm. The crossover operator exchanges the information of 

the selected parents to generate promising offspring or sequences. It can be used to generate a set of new 

solutions or offspring between two solutions from the set. The idea behind crossover is that the new 

chromosome may be better than both of the parents if it takes the best characteristics from each of the parents. 
The crossover operator is applied to all individuals in the population, making (NPOP × (NPOP-1))/2 

applications for each type of crossover operator. Four crossover operators were used in GA: order crossover 

with one-point (1P), order crossover with two-point (2P), partially mapped crossover (PM), and order crossover 

with two blocks (2B). The operators 1P, 2P and PM are widely used in evolutionary computation and can be 

found in [20, 21].[21]We developed the 2B operator. The two cutting points c1 and c2 used in 2P, PM and 2B 

are given as c1=r/3+1 and c2=2×r/3 + 1. The cutting point c1 used in 1P is given as c1=r/2. We did not use the 

random generation of these points for the algorithm proposed because we want to split the chromosome in 

approximately three equal parts when we used 2P, PM and 2B, and in approximately two equal parts, when used 

1P. We developed the 2B operator on the idea of replicating the good built blocks. In addition, it increases the 

number of solutions generated and evaluated by GA, diversifying the search to find the optimal solution of the 

problem. The Figure 1 illustrates this procedure, where each parent D1 and D2 is divided into three blocks. The 

cutting points that generate the blocks are c1 and c2, specified above. Taking D1 as the base, the blocks b1, b2 
and b3 generate four offspring (children): F1=<b1 b2>, F2= <b1 b3>, F3= <b2 b1>, and F4= <b3 b1>. The block b1 is 

the part between the two cutting points (central block D1 – gray color). The block b2 is formed by elements that 

are not in b1 and they are placed in the order of their appearance in D2. The block b3 consists of the elements of 

block b2, with their order reversed. The same procedure is repeated for D2 being the base, generating more four 

children. In this work, a new mutation operator is proposed in order to intensify the search, regenerating the 

solutions considered worse quality. The purpose of this operator is to build good solutions from a particular 

solution combined with the best solution found up to that moment of the search. The mutation operator used in 

the GA works as follows. Figure 1 shows an application of the mutation operator with r=8, k=2, sopt=<3 5 8 6 1 

7 2 4> (solution defined as the regeneration solution), and s=<7 3 1 5 2 6 8 4> (a solution of the current 

population to be regenerated), it produces the solution sr=<7 2 4 3 5 8 1 6> (solution regenerated by the 
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application of the mutation operator). Initially, k adjacent positions of the regeneration solution are copied for 

the solution regenerated. Thereafter, the copies can be alternate positions of the regeneration solution, if certain 

receptors of k adjacent positions have already been copied to the solution regenerated. Furthermore, the copy 
can also be made with v positions of the regeneration solution (v˂k). This happens when the number of 

receptors, from a certain position of the regeneration solution, yet not copied from the regeneration solution is 

less than k. In the example, the regenerate solution was obtained as follows. Let s1 be the first receptor of the 

solution s (s1=7). Insert s1 into first position of solution sr (sr = <7>). Find the position j of the receptor s1 in 

solution sopt (j=6). Let b=(bj+1, bj+2, ..., bj+k) be a partial sequence of sopt with k adjacent positions, after 

position j(b=(2, 4)). Insert b into sr (sr=<7 2 4>). This process is repeated for other receptors of the solution s, 

checking which of them are not in sr. Thus, the next iterations show the following results {s2=3, j=1, b=(5, 8), 

sr=<7 2 4 3 5 8>}, {s3=1, j=5, b=(), sr=<7 2 4 3 5 8 1>}, {s6=6, j=4, b=(), sr=<7 2 4 3 5 8 1 6>}. Another 

important feature of this technique is that the regeneration solution can be updated whenever a better solution is 

found. After several tests, the GA is running with k=1, 2, ..., r/2. 

 
Figure 1. The crossover (2B) and mutation operator. 

 

vi) The replacement strategy is responsible for controlling the replacement of individuals from one 

generation to the next in the population. The size of the population is constant (NPOP). The proposed strategy 

for our GA is fully replacing all individuals of the population by the best individuals found in the application of 

the crossover and mutation operators. Acting this way, the GA intends to diversify and intensify further the 

search to find the optimal solution of the problem. 

 

 

Figure 2. Pseudocode of the Genetic Algorithm. 

vii) Many stopping criteria based on the evolution of a population may be used. Some of them use the 

following conditions to determine when to stop: generations (when the number of generations reaches the value 

of generations), time limit (after running for an amount of time in seconds equal to time limit), fitness limit 

(when the value of the fitness function for the best point in the current population is less than or equal to fitness 

limit), stall generations (when the average relative change in the fitness function value over stall generations is 

less than function tolerance),  function tolerance (The algorithm runs until the average relative change in the 
fitness function value over stall generations is less than function tolerance), among other conditions. The 

algorithm stops when any one of these conditions is met. Initially, the GA used the following criteria: 
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generations, time limit and stall generations. Several analyzes were performed with the execution of the 

algorithm applied to different instances of the problem, where it was observed that the algorithm never stopped 

for the values of the first two variables (generations=r and time limit=3600). The average value of fitness of 
individuals of the current population was used for the third variable. It was compared with the average value of 

the immediately preceding population. When these values are equal to at least 2 consecutive iterations, the 

algorithm stops and presents the best solution found to the problem. This feature prevents the evaluation of 

solutions that can be distinct from those already generated and analyzed, but with the same performance. This 

greatly reduced the algorithm runtime. The Figure 2 shows o pseudocode of the GA, where the crossover and 

mutation population is allocated to array ICM. The fitness of the individual v is stored in its first component (Iv(0) 

and ICMv(0)). The components of avg1 and avg2 contain the average fitness of the populations I and ICM. These 

values are calculated for individuals of the current population and immediately preceding population. 

The GA algorithm is based in the DGA algorithm used for Silva, Viana and Silva [22, 23]. They used 

the DGA algorithm in the resolution of the No-wait and Permutational Flowshop Scheduling Problem (NWFSP 

and PFSP) with makespan as performance criteria. 
 

Table 2. Instances of the problem with relation to the blood type. 

Instance PATIENT DONOR 

  A B AB O r A B AB O d 

i1 24 12 12 12 60 8 8 8 8 32 

i2 12 24 12 12 60 8 8 8 8 32 

i3 12 12 12 24 60 8 8 8 8 32 

i4 12 12 24 12 60 8 8 8 8 32 

i5 24 12 12 12 60 15 15 15 15 60 

i6 12 24 12 12 60 15 15 15 15 60 

i7 12 12 12 24 60 15 15 15 15 60 

i8 12 12 24 12 60 15 15 15 15 60 

i9 24 12 12 12 60 23 23 23 23 92 

i10 12 24 12 12 60 23 23 23 23 92 

i11 12 12 12 24 60 23 23 23 23 92 

i12 12 12 24 12 60 23 23 23 23 92 

i13 40 20 20 20 100 19 19 19 19 76 

i14 20 40 20 20 100 19 19 19 19 76 

i15 20 20 20 40 100 19 19 19 19 76 

i16 20 20 40 20 100 19 19 19 19 76 

i17 40 20 20 20 100 25 25 25 25 100 

i18 20 40 20 20 100 25 25 25 25 100 

i19 20 20 20 40 100 25 25 25 25 100 

i20 20 20 40 20 100 25 25 25 25 100 

i21 40 20 20 20 100 31 31 31 31 124 

i22 20 40 20 20 100 31 31 31 31 124 

i23 20 20 20 40 100 31 31 31 31 124 

i24 20 20 40 20 100 31 31 31 31 124 

i25 80 40 40 40 200 45 45 45 45 180 

i26 40 40 80 40 200 45 45 45 45 180 

i27 40 80 40 40 200 45 45 45 45 180 

i28 40 40 40 80 200 45 45 45 45 180 

i29 80 40 40 40 200 50 50 50 50 200 

i30 40 40 80 40 200 50 50 50 50 200 

i31 40 80 40 40 200 50 50 50 50 200 

i32 40 40 40 80 200 50 50 50 50 200 

 

IV. COMPUTATIONAL EXPERIMENTS 

The computational experiments carried out to observe the performance of GA was executed in a PC 

with a clock of 3.2 GHz and 8Gbytes of RAM and the source program is in ANSI C. Table 2 shows how the 

proportion of donors and patients was divided by blood type, in the instances used of the problem. Table 3 

present the performance of the GA for each crossover operator, with the F(s) values and the execution time 

given in seconds. In Table 4, a comparation of performances is made for each crossover operator with the 
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Number of Transplants Operationalized (NTO) for each instance. The Rate of Transplants not Operationalized 

(RTnO), in relation to the minimum number of d and r, is presented.  

The Table 3 shows that operators 2B (media of 76,87 seconds) and 2P (media of 20,96 seconds) spent 
the most execution time when compared to operators 1P and PM.In both tables, the bold values represent the 

best performances for each instance. The GA with operator 2B had much more significant gains than with the 

others crossover operator. Importantly, operator 2B obtained the best RTnO media (1.34%), followed by 2P 

(4.50%), PM (4.91%) and 1P (5.00%). Therefore, our GA will work with the operator 2B.  

Table 3. Performance of GA with the F(s) values and execution time. 

Instance   F(s)        Time (s) 

 

  

  1P 2P PM 2B 1P 2P PM 2B 

i1 375971392 375974656 296789888 375977056 0,94 2,36 0,25 2,48 

i2 380108800 380108608 289108928 380115264 1,67 2,75 0,61 2,91 

i3 499019616 499030592 303650720 469163168 0,97 2,62 0,31 0,89 

i4 455595712 455607424 306297760 414877568 0,70 1,39 0,14 50,64 

i5 625057856 705236416 308996768 809690048 2,91 9,01 0,58 11,36 

i6 624338880 660730176 289641696 757348224 3,78 7,06 0,58 23,43 

i7 528530464 664025088 297601856 895008192 3,77 5,44 0,48 244,93 

i8 661609728 696268992 295694880 772859456 3,73 12,04 0,59 658,25 

i9 447667616 497541376 247947632 513912896 3,98 12,54 0,53 13,68 

i10 598313728 802425920 295512256 888207232 2,08 24,31 0,41 80,18 

i11 620999040 618782848 295097536 599256000 3,14 7,59 0,83 327,10 

i12 905636032 841415552 295124384 985618816 6,05 6,73 0,92 24,99 

i13 2740048128 2851913984 1306548224 2926460672 5,22 31,48 1,97 24,21 

i14 2236011520 2459238912 1288857216 2459267584 6,12 26,07 1,89 26,44 

i15 2568841728 2861829632 1308437888 2861859584 19,47 29,49 1,58 19,11 

i16 1302843392 2608352000 1302845440 2608344832 1,14 20,82 1,14 37,53 

i17 1299054720 3216861440 1299042304 3420923648 2,17 11,53 1,83 31,00 

i18 1254173184 3731561216 1254174592 4483395072 2,62 41,74 1,27 47,89 

i19 1286382080 3160828160 1286385408 3323138560 1,36 50,57 1,28 74,80 

i20 1291543680 3165678592 1291563776 3401385216 2,67 57,00 2,23 50,77 

i21 1276906112 3086192384 1276907904 3116426240 1,14 56,51 2,38 53,51 

i22 1239856768 3589917184 1239858432 4772630528 2,28 49,69 3,09 48,36 

i23 1266229248 2879570432 1266247296 3090384640 1,17 26,63 1,64 159,84 

i24 1242726784 3976840960 1242727168 4607013888 1,17 22,84 1,17 20,48 

i25 10216656896 10216659968 10216660992 24202844160 6,30 16,45 6,31 119,90 

i26 10249030656 10249035776 10249031680 27540625408 6,03 24,17 4,75 83,16 

i27 10105809920 10105809920 10105812992 27156402176 4,25 8,37 6,47 156,56 

i28 10105738240 10105747456 10105763840 27156402176 6,25 8,25 4,81 10,45 

i29 10122449920 10122458112 10122456064 10122446848 4,72 32,68 9,01 8,50 

i30 10097202176 10097214464 10097211392 10097212416 4,80 23,46 7,19 16,77 

i31 10064220160 10062018560 10064230400 10064224256 7,09 19,91 9,08 12,69 

i32 10010795008 10010816512 10010839040 10010835968 4,91 19,18 9,03 17,15 

        Time Media 3,89 20,96 2,64 76,87 
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Table 4. Performance of GA with the NTO and RTnO values. 

Instance     NTO     Min     RTnO     

  1P 2P PM 2B Best (r,d) 1P 2P PM 2B Best 

i1 32 32 32 32 32 32 0,0 0,0 0,0 0,0 0,0 

i2 32 32 32 32 32 32 0,0 0,0 0,0 0,0 0,0 

i3 32 32 32 32 32 32 0,0 0,0 0,0 0,0 0,0 

i4 32 32 32 32 32 32 0,0 0,0 0,0 0,0 0,0 

i5 52 51 52 60 60 60 13,3 15,0 13,3 0,0 0,0 

i6 52 49 52 60 60 60 13,3 18,3 13,3 0,0 0,0 

i7 49 49 51 59 59 60 18,3 18,3 15,0 1,7 1,7 

i8 56 57 58 57 58 60 6,7 5,0 3,3 5,0 3,3 

i9 60 60 60 60 60 60 0,0 0,0 0,0 0,0 0,0 

i10 60 60 60 60 60 60 0,0 0,0 0,0 0,0 0,0 

i11 60 60 58 60 60 60 0,0 0,0 3,3 0,0 0,0 

i12 55 60 60 60 60 60 8,3 0,0 0,0 0,0 0,0 

i13 76 71 72 76 76 76 0,0 6,6 5,3 0,0 0,0 

i14 76 76 75 76 76 76 0,0 0,0 1,3 0,0 0,0 

i15 76 73 73 76 76 76 0,0 3,9 3,9 0,0 0,0 

i16 76 76 76 76 76 76 0,0 0,0 0,0 0,0 0,0 

i17 99 100 97 100 100 100 1,0 0,0 3,0 0,0 0,0 

i18 90 92 90 100 100 100 10,0 8,0 10,0 0,0 0,0 

i19 85 96 85 100 100 100 15,0 4,0 15,0 0,0 0,0 

i20 94 97 94 100 100 100 6,0 3,0 6,0 0,0 0,0 

i21 100 100 100 100 100 100 0,0 0,0 0,0 0,0 0,0 

i22 99 100 98 100 100 100 1,0 0,0 2,0 0,0 0,0 

i23 99 98 100 100 100 100 1,0 2,0 0,0 0,0 0,0 

i24 89 100 91 100 100 100 11,0 0,0 9,0 0,0 0,0 

i25 170 170 170 180 180 180 5,6 5,6 5,6 0,0 0,0 

i26 180 180 180 180 180 180 0,0 0,0 0,0 0,0 0,0 

i27 169 166 170 180 180 180 6,1 7,8 5,6 0,0 0,0 

i28 167 162 167 178 178 180 7,2 10,0 7,2 1,1 1,1 

i29 180 180 180 180 180 200 10,0 10,0 10,0 10,0 10,0 

i30 200 199 200 200 200 200 0,0 0,5 0,0 0,0 0,0 

i31 170 169 170 170 170 200 15,0 15,5 15,0 15,0 15,0 

i32 178 179 180 180 180 200 11,0 10,5 10,0 10,0 10,0 

           RTnO media 5,00 4,50 4,91 1,34 1,28 

 

V. CONCLUSION 

This work showed that the results obtained with the computational experiments of the genetic 

algorithm proposed to solve the kidney transplantation problem, suitable for the Brazilian system, were efficient 

and effective in the search for good quality solutions, when compared to the initial solutions generated for the 

problem, in the initial population of the method used. The proposed GA behaved very well in response to the 

problem, and it is clear that its computational implementation is very simple. 
After several tests, it was noticed that the crossing operator 2B performed better than the other genetic 

operators when compared to the objective function and the number of transplants operationalized, followed by 

the performance of crossing operators 2P, PM and 1P. As for the computational time, the crossing operator PM 

had more speed in presenting its good solutions than the others, while the operator 1P had the worst 
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performance in the generation of good solutions. This is due to the fact that this operator generates more 

crossbreeding solutions than the other genetic operators used in our GA. 

It is worth noting that, no description of this specific problem has been found in the literature. Given 
that our problem contemplates a real situation from Brazil. Other structures different from other problems 

similar to ours were incorporated into the problem such as surgical cost and geographic data containing latitudes 

and longitudes of patients, donors and hospitals. These values were simulated on the map of Brazil in different 

Brazilian states. An attempt was made to get closer to reality. In addition, the priority of care that each patient 

has in the list of patients to be transplanted was also introduced. 

Moreover, it was noticed that Brazil, being a continental country, does not have facility of a mobility 

exchange of donors and recipients to hospitals in order to perform the transplants. This requirement is met in our 

proposed mathematical model for problem solving and which our problem-solving method has also 

incorporated. 

As future recommendations, it would be very interesting to verify the application of the mathematical 

model in the instances described in the computational experiments in order to compare with the solutions 
presented by our genetic algorithm. See the possibility of developing an exact algorithm or apply the Egon Balas 

algorithm to the problem to know the optimal solutions of each instance. Other recommendations would be to 

apply GA with NPOP = 100, 150 and 200. Use other genetic operators of crossing, mutation and a heuristic to 

generate the initial population in the genetic algorithm and analyze their performances. 

Our next job will be to use the best solution from the GA algorithm and apply it to the TG algorithm, in 

[24], as an initial solution. Thus, TG accelerates the tree search to determine the optimal solution for the specific 

problem. In addition, we will also use the SH algorithm, in [25], to populate the initial DGA population and 

speed up the search for the optimal solution. The DGA was successfully applied to the No-Wait and 

Permutational Flowshop Scheduling Problem, cf. [22, 23].  
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