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ABSTRACT: Whether for industrial, transportation or complex systems, ball bearing are considered as major 

factor in kinematics rotating systems. Apart from their strategic role in the drive assemblies, these mechanical 

components can require an increased rate of reliability.Bearings turbines and rotating machines are primordial 

in most mechanical components which contribute directly to the performance of automotive and aerospace 

engines through reliability. Due to their role as liaison between fixed and moving parts, any failure could have 

catastrophic consequences such as loss of engine use.This research is aimed to develop the analytical 

fundamentals details of new model which is dedicated to the dynamic behavior of rotating ball bearings. 

Theoretical research will be detailed enough to provide a simple model that lends easily to programming, but 

powerful enough to incorporate the effect of a maximum of influential parameters on the vibration of 

bearings.The essence of this work is to present an analytical model of a specific type single of row effect balls 

(SKF 6004). This study is a first step dedicated to define the geometric characteristics, and in second time to 

determine the equations governing the distribution of responsibilities within the ball bearing. 
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I. INTRODUCTION 
 Even if the geometry of a ball bearing is perfect, it will still produce vibrations. The vibrations are 

caused by the rotation of a finite number of loaded rolling contacts between the balls and the guiding rings. 

Because these contacts are elastic, the bearing stiffness becomes explicitly dependent on time.In general, a time 

varying stiffness causes vibrations, even in the absence of external loads. Since the stiffness can be regarded as a 

system parameter, the variable stiffness leads to a so-called parametric excitation. It is one of the major sources 

of vibration in ball bearings. The first systematic research on this subject was conducted by (Perret, 1950) and 

(Meldau, 1951). 

 

(Dowson and Higginson, 1977) have proposed the first analytical solutions to EHD in case of 

cylinder/plane contact. Then, in the middle of 1970s, digital solutions contact ellipsoid/ maps have been 

proposed by (Hamrock and Dowson, 1977). Thus, using these procedures, we can go back to the thicknesses of 

lubricant in contact and we can realize that these thicknesses vary between a few nanometers.From the 

viewpoint of contact fatigue in the presence of indentation, (Wang and al., 2007) exhibit a work based on the 

introduction of a ceramic rolling element (Si3N4) from the rolling ones in steel. This study demonstrates a 

“smoothing effect” created by the passage of ceramic rolling element which generates strong plastic 

deformation of bead. This “smoothing effect” makes it possible to reduce the height of beads and, at the same 

time, local overpressure. This suggests that the addition of ceramic allows increasing number of cycles to 

chipping adjacent indents.In addition, the work presented by (Jacq, 2001) shows a smaller effect of the load on 

damage by chipping in vicinity of the with respect to sliding.(Cheng, 1997) present a model including contact 

fatigue crack initiation in slip bands formed in the grains of the material. The slip bands are modeled by two 

stacks of dislocations of opposite signs, of which the length is equal to that of the grains. Accumulation of 

dislocations occurs during the cyclic loads due to irreversibility of dislocations movement. This type of 

analytical study is actually based on the work of (Tanaka and Mura, 1981), together with its collaborators 

studied crack initiation in a crystalline material subjected to cyclic loading.Moreover, the modeling of the 
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propagation of cracks in contact fatigue was studied by many other authors. Of particular we note: (Keer and al., 

1983), (Lee and al., 1986), (Murakami and al., 1994). 

II. ROLLER BEARING 
The bearing is a mechanical member permitting rotation of one part relative to another by reducing 

friction. It has three main functions: 

 -The transmission of forces 

 -Rotation states in one piece with minimum friction 

 -The position of a shaft relative to the housing 

 Thus, if we describe a ball, we find rolling elements, separated by a cage, an inner ring and an outer ring 

provided with raceways (Figure 1). 

The ball bearing can replace the sliding friction by rolling one. However, various body contacting (inner ring 

and balls for example) showing differences speed in their contact areas that will generate local slipping. Indeed, 

the friction generated by the fastest surface will tend to pull the slow surface. 

 

 
Figure 1: Overview of ball bearings components 

 

To ensure a long life, the roll bearings are lubricated with grease or oil. According to their operating 

conditions (load, speed.......), different regimes of lubrication can be occurs:  

- A system of hydrodynamic lubrication (HD) 

- A system of elastohydrodynamic lubrication (EHD) 

 

2.1. The E.H.D Contacts In Bearing  
A roll bearing can force the position of shaft relative to system. The rolling elements transmit the 

forces applied by the shaft to the inner race fixed to the outer ring. They facilitate also the rotation of shaft 

relative to housing (Figure 2). 

 
Figure 2: Schematic operation of a roll bearing  

 

Geometry of rolling elements and raceways (inner and outer ring) differs depending on the loading conditions 

(axial and / or radial moments) and speed. Bearings angular contacts are designed to simultaneously collect 

radial and axial loads (Figure 3). They can operate at very high speed and are therefore used to stopping gas 

turbines. The axial component of the thrust and the radial component generated by gas is due to the own weight 

of the shaft and the unbalance effects engagement in the case of the use of a speed reducer. 
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Figure 3: Ball bearing angular contact  

 

Because of the high speeds (above 20000 trs/min ) , centrifugal forces (Fc ) acting on the balls have the 

same order of magnitude, as the forces associated with contact with the rings ( Figure 4). These efforts are 

reflected in resolution of load distribution in the bearing, as the gyroscopic moments acting on the ball. The 

details of the corresponding quasi- static analysis are described by (Harris, 1984).The determination of bearing 

kinematics is based on assumption of pure rolling, which is defined by the equality of geometric points of speed 

ball and ring contact considering non-deformable solids. The spin rate of the balls (ωb) and the orbital velocity 

(ωm) depend on angles of contact between ball and the outer ring (αo) and ball with inner ring (αi) (Figure 4). 

Centrifugal forces tend to flatten ball to the bottom of outer ring and corresponding contact angle (αo) is less 

than the angle of geometric contact (α0). The opposite occurs for the inner contact angle (αi). The pivot bearing 

is impossible without simultaneously ball contacts / inner ring and ball / outer ring.Due to centrifugal forces, 

pressures and contact surfaces are more important to touch ball / ball at the outer ring / inner ring contact. The 

pivot is then assumed to be zero, thus fixing the kinematics of the bearing. This is assuming control of the outer 

ring ball (Dawson and al. 1986).  

 

 
Figure 4: Distribution of kinematic and load bearing ball angular contact with high speed 

 

The contact between the rolling elements and rings is characterized by non-compliant type ball / plane, 

where the local pressure has the effect of deforming the solid surfaces. Hertz has been the pioneer in this field 

(1881), laying the foundations of the Hertzian contact theory which estimates the distribution of pressure, 

deformation and dimension of contact.The speed differences between the solids in contact, due to sliding of 

pivot, are responsible of frictional forces, directly proportional to the coefficient of friction. This reflects the 

relationship between normal and transmitted tangential at contact forces.In the case of a dry contact, the friction 

coefficient is higher than coefficient of lubricated contact. It leads to friction levels which is too important in roll 

bearing and cause more or less long term ruin in operation. 

 

2.2. The H.D. Contacts In The Bearing 

In a ball bearing exposed to axial and radial forces, the charge distribution is not in cyclic symmetry. 

The contact angles are different for each of rolling elements which have not all the same kinematics.However, it 

is necessary that all rolling elements retain on average a regular spacing from each other to ensure the proper 

functioning of mechanism service. The cage can meet this need by positioning each element in a cell. It supports 
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the efforts made by opponents of the printed contacts with rings (Figure 5) movement. The lubricant can 

accommodate the difference in speed between the rolling element and the cage and avoid a dry friction between 

the contacting surfaces. 

 

 
Figure 5: Description of contact ball cage in a ball bearing  

 

The cage plays the role of separator and must, however, be guided in rotation especially in high speed 

applications where the imbalance caused by the eccentricity of gravity center can be fatal. It is possible to guide 

the cage by the inner ring or the outer ring (Figure 6). In the first case, the cage will tend to be driven (mobile 

ring) but is sensitive to unbalance and therefore requires a good balance. In the second case the cage is 

restrained by the outer ring (fixed) and is more sensitive to the phenomenon of torque (lash adjuster operation 

by differential centrifugation and expansion). 

 
Figure 6 - Guiding of the cage and inner ring/outer ring  

 

III. MATHEMATICAL DEVELOPMENT OF A SINGLE BEARING 
3.1. INITIAL MODEL 

In this part we consider a rotor, bearing rings and support. The model becomes complex with a large 

number of degrees of freedom (ddl). In our model, we applied three degree of freedom system as described in 

Figure 8, in order to focus the study on the vibration response of the balls (Sanchette-Gosset, 1993) and (Tanaka 

and Mura, 1981).The dynamic behavior of rigid bearing support and the contribution of the support is also 

considered. Thus, this simplified model that will be adjusted with the calculation of vibration response. 
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Figure 8: Model of bearing system 

 

With: 

M1: Mass of outer ring [kg] 

M3: Mass of  inner ring [Kg] 

M2: Mass of ball [kg] 

K1: stiffness of outer ring [N/m], 

K3: stiffness of inner ring [N / m] 

K21: Stiff ball [N / m] 

C22: Damping ratio Film external fluid [N.s / m] 

C21: Damping coefficient of internal fluid film [N.s / m] 

The different parameters governing the behavior of this model were developed using the following analytical 

elements: 

 

The Rings :We considered a mass-spring system with neglected structural damping, the rigidities of the two 

rings is determined by the following equations: 

Rigidity of the inner ring 

2

3 3 3k M 
 (1)                                                                               

Rigidity of the outer ring 

2

1 1 1k M 
    (2)                                                                                     

Each of inner and outer rings will be represented by a mass-spring combination which corresponds to a single 

degree of freedom system. The internal damping has been neglected. The natural frequency of the flexural 

vibration mode number "n" is given by the following expression: 

4

[ ² 1]

1 ²
n

n n EI

Rn








 (3)                                                                                                                                        

where: 

ωn  angular frequency of mode [rad/s] 

n     order mode 

E     modulus longitudinal elasticity [N/m2] 

I      moment of inertia cross section of the ring [m4] 

μ      linear density [kg/m] 
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R      radius of ring [m]. 

 

Modes 0 and 1 are considered as rigid modes. Therefore the second mode is considered as the first bending 

vibration mode. The angular frequency of the system to a single degree of freedom will be taken as: 

4
2.68n

EI

R





                                                                                                                                          

 

 

THE BALLS : Rigidity ball has the order of 8.3 109 N / m. Compared to other rigidities, it is considered 

infinitely rigid. Therefore modeling the ball was deemed to be a mass element. 

 

THE FLUID FILM : The development of elastohydrodynamic theory of lubrication (EHD) showed that films 

with a few micrometers thick are occurs in rolling contact. Therefore, the characterization of lubrication system 

depends on the value of lubricant film thickness. The theory developed by Hamrock [1], expressed in terms of 

stiffness and damping coefficients dimension film of fluid is given by the following expressions: 

Fluid film stiffness: 

  

2 2

20 0 0 0

0 0 0 02 2 2 2 5/2 2 3

0 0 0

3 2 (1 )4
[ sin ² sin cos cos ]
(1 ) 4(1 ) (1 )r k

k
W

   
   

   


  

  
                         (5) 

 Amortization of fluid film : 
2

20 0

0 0 0 02 2 3/2 2 2 2 5/2

0 0 0

4 (1 2 )4
[ sin ² sin cos cos ]
2(1 ) (1 ) 2(1 )r k

C
W

  
   

   


  

  
                            (6) 

With : 
2 2

20

02 2 2 2 1/2

0 0 0

(1 )4
cos

[16 (1 )]r kW




    




 
 

2 1/2

0

0

0

(1 )
tan

4

 







 

0 1
h

c
  

 
And: 

λk     defines the ratio of width length of contact area 

φ0    is the maximal angle, described by the distribution charge  

Wr  is the resultant force applied to fluid film 

 

0    
 is an eccentricity coefficient 

  c     is the diametrical bearing clearance 

  h     is the thickness of the fluid film  

 

IV. RESULTS AND DISCUSSIONS 
The general equation to solve a system of three degrees of freedom subjected to three forces, depending 

on the mass matrices, damping and stiffness being have a general form: 

         [ ]. [ ]. [ ].A y B y C y F       

A, B and C represent respectively the masses of balls, damping and stiffness system. 

             

1

2

3

0 0

0 0

0 0

M

A M

M

 
 


 
  

                                     

22 22

22 22 21 21

21 21

0

0

C C

B C C C C

C C

 
 

   
 
  
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1 22 22

12 22 21 21

21 3 21

0

0

k k k

C k k k k

k k k

  
 

   
 
   

                                                          

The motion vector {y} and the force vector {f}. The vector F represents the impact forces generated by the fault 

of passage balls. 

                      

1

2

3

y

y y

y

 
  

  
 
                      

                    

1

2

3

F

F F

F

 
  

  
 
  

                                                                    

The equation of motion, governing this system model is the following:   

1 1 22 1 22 2 1 22 1 22 2 1

2 2 22 2 22 21 2 21 3 22 1 22 21 2 21 3 2

3 3 21 3 21 2 3 21 3 21 2 3

( )

( ) ( )

( )

M y C y C y k k y k y F

M y C y C C y C y k y k k y k y F

M y C y C y k k y k y F

     

         

      

  

   

  

                             

(7)  

This can be written in matrix form: 

1 1 1 1
1 22 22 1 22 22

2 2 22 22 21 21 2 22 22 21 21 2 2

3 21 21 21 3 21
3 3 3 3

0 0 0 0

0 0

0 0 0 0

y y y F
M C C k k k

M y C C C C y k k k k y F

M C C C k k
y y y F

                                 
                    

                               

 

 

 



 

 The trivial solution of the equation can be written as: 

AY BY CY F               

It becomes, after multiplication by A
-1

: 

 
1 1 1Y A BY A CY A F          

We work in the case without default so F1 = F2 = F3 = 0, 

 Therefore 
1 1 1Y A BY A CY A F       

A
-1

 is calculated by the shape: 

1 1

det

tA coA
A

 
             

  

 With: 

 1 2 3det( )A M M M
 

And    

1

1

2

3

1
0 0

1
0 0

1
0 0

M

A
M

M



 
 
 
 

  
 
 
 
 

 

By replacing matrices by actual experimental values of the masses (M1, M2, M3), damping (k1, k3, k21, k23) and 

stiffness (C21, C23). 

k1, k2 calculated from (5) 

C21, C23: calculated from (6) 

M1 = 25*10
-3

 kg, M2 = 2*10
-3

 kg, M3 = 23*10
-3

 Kg 

k1 = 10
7
 N/m, k3 = 10

7 
N/m, k21 = 0, 9925 N/m, k23 = 0, 9925 N/m 

C21 = 9, 9072, C23 = 9, 9072 
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The mass matrix becomes: 

 

0 0 0

0 9,9 9,9

0 9,9 9,9

B

 
 

  
  

 

With: 

1

40 0 0 0 0 0

0 500 0 0 9,9 9,9

0 0 43,5 0 9,9 9,9

A B

  
  

   
    

  

And: 

 
1

0 0 0

0 4950 4950

0 413,25 413,25

A B

 
 

  
  

 

The damping matrix: 

 

7

8

10 0 0

0 0,99 0,99

0 0,99 10

C

 
 

  
  

 

With: 

 

7

1

8

40 0 0 10 0 0

0 500 0 0 0,99 0,99

0 0 43,5 0 0,99 10

A C

  
  

   
    

 

And: 

 

7

1

7

40.10 0 0

0 495 495

0 43 435.10

A C

 
 

  
  

 

The matrix L which explicitly interpolating numerical application: 

7

7

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

40.10 0 0 0 0 0

0 495 495 0 4950 4950

0 43 435.10 0 413,25 413,25

L

 
 
 
 

  
 
  
    

  

In seeking solutions of X: 

 6 7

7

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

40.10 0 0 0 0

0 495 495 0 4950 4950

0 43 435.10 0 413,25 413,25

X

X

X
A I X

X

X

X

 
 

 
 

   
 

   
     

 

The polynomial to be solved is given by: 
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6 5 9 4 13 3 18 2 21( ) 5,363. 4,75.10 . 2368.10 . 1,74.10 . 8,613.10 . 8,61P X X X X X X X        

The own values are: 

 

 

4

1

4

2

4

3

4

4

3

5

6

2.10

2.10

6,5763.10

6,6178.10

4,948.10

0,1

V

V

V

V

V

V



 

 





 

 

The vectors associated with each own values are: 

5

1 1 4

5

2 1 4

6 5 2 1

3 2 3 5 6

6 5 2 1

4 2 3 5 6

4

5 2

5.10

5.10

1,0618.10 1,517.10 6,98.10 9,97.10

1,22.10 1,5.10 8,06.10 9,97.10

2,02.10 9,

V e e

V e e

V e e e e

V e e e e

V e





   

   



 

 

   

    

 

  

  

    

    

 
8 4

3 5 6

5 10 2 11

6 2 3 5 6

55.10 4,72.10

9,95.10 3,83.10 9,95.10 3,83.10

e e e

V e e e e

 

   

 

    

  

    

  

The explicit matrix vectors calculated: 

 

5 5

6 6 4 1

5 5 8 10

2 2 2

1 1 4 11

5.10 5.10 0 0 0 0

0 0 1,0618.10 1,22.10 2,02.10 9,95.10

0 0 1,517.10 1,5.10 9,55.10 3,83.10

1 1 0 0 0 0

0 0 6,98.10 8,06.10 1 9,95.10

0 0 9,97.10 9,97.10 4,72.10 3,83.10

P

 

   

   

  

   

 
 
 
 

  
 

  
 
    

 

With:  

P: matrix that contains the own vector  

Furthermore P
-1 

results in the following matrix: 

 

 

4 1

4 1

4 4 3

1

4 4 3

2 3 3

4 8

10 0 0 85.10 0 0

10 0 0 5.10 0 0

0 3,05.10 3,31.10 0 2,93.10 0,5

0 3,53.10 3,31.10 0 3, 4.10 0,5

0 9,994.10 4,98.10 0 1 5,83.10

0 1 1 0 2,02.10 3,47.10

P





 



 

 

 

 
 

 
   

  
   

 
 
    

 

And: 
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4

4

4

1

4

3

2.10 0 0 0 0 0

0 2.10 0 0 0 0

0 0 6,5763.10 0 0 0

0 0 0 6,6178.10 0 0

0 0 0 0 4,948.10 0

0 0 0 0 0 0,1

P AP

 
 

 
 

  
 
 
 
  

 

 

And we consider : 
'

1

'

2

'

3

'

4

'

5

'

6

y

y

y y

yy

y

y

 
 
 

   
    
     

 
 
  

 

This vector can be written as follows: 
'

1

'

2

'

3

''

1

''

2

''

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Vt

y

y

y
e K

y

y

y

 
 
 
 

  
 

 
 
  

 

With the vector V can be written as: 

1 1

0 I
V

A C A B 

 
  
 

  

The previous system is reflected in the resolution of the matrix: 
4

4

4

4

3

2.10
'

1
2.10'

2

' 6,5763.10
3

''
6,6178.10

1

''
4,948.102

''
0,13

1 0 0 0 0 00 0 0 0 0

0 1 0 0 0 00 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0
0 0 0 0 1 0

0 0 0 0 0
0 0 0 0 0 1

t

t

t

t

t

t

ey

ey

y e

y e

y
e

y
e







    
   
   
   

      
   

         

Hence the withdraws: 

 
42.10

1 1ty e    

Incorporating includes: 
42.10

1 42.10

te
y t A                                                                                                                           

With the initial conditions imposed on the constant A to the value: 

At                      t = 0 then        y1=0                      
4

1

2.10
A    

Hence the solution y1: 
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42.10

1 4 4

1

2.10 2.10

te
y t                                                                    (10)  

Similarly for y1 we find the general expression of y2: 

 
42.10

2 1ty e    

42.10

2 42.10

te
y t B



     

 With the initial conditions imposed there is the value of the constant B:  

At          t = 0        y2 =0             
4

1

2.10
B   

Where: 

  

42.10

2 4 4

1

2.10 2.10

te
y t



                                                                                                         (11)  

Integrating is the solution of the vector y3: 

 
46,5763.10

3 1ty e    

46,5763.10

3 46,5763.10

te
y t C



     

  

With the initial conditions imposed there is the value of the constant C:  

At          t = 0            3 0y             
4

1

6,5763.10
C    

46,5763.10

3 4 4

1

6,5763.10 6,5763.10

te
y t



   

 
 

V. CONCLUSION 

Vibration analysis, for conditional preventive maintenance, proves a wonderful tool for several decades 

for the industry. It serves three levels of analysis: monitoring, diagnosis and damage of equipment state. 

This work helped to develop an analytical model that simulates the behavior of a vibratory ball bearing with 

three degrees of freedom.The problem addressed in this paper is the development of an analytical simulator 

vibration bearing. Theoretical research is detailed enough to provide a simple model that lends itself easily to 

programming, but powerful enough to incorporate the effect of a maximum of influential parameters on the 

vibration of bearings. 
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