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ABSTRACT: In this paper we have obtained the best error bounds for deficient Quartic Spline interpolation
matching the given functional value at mid points and its derivative with two interior points with boundary
condition.
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1. INTRODUCTION

The most popular choice of reasonably efficient approximating functions still continues to be in favour
of Quartic and higher degree (See deBoor [1]). In the study of Piecewise linear functions it is a disadvantage
that we get corner's at joints of two linear pieces and therefore to achieve prescribed accuracy more data than
higher order method are needed. Various aspects of cubic interpolatory splines have been extended number of
authors, Dubean [3], Rana and Dubey [10]. Morken and Reimers [6]. Kopotum [5] has shown the equivalence
of moduli of smoothness and application of univariate splines.Rana and Dubey [8] generalized result of Garry
and Howell [4] for quartic spline interpolation. Rana, Dubey and Gupta [9] have obtained a precise error
estimate concerning quartic spline interpolation matching the given functional value at intermediate points
between successive mesh points and some boundary conditions.

I1. EXISTENCE AND UNIQUENESS.

Let a mesh on [0, 1] be given by P ={0 =X, <X, <—< X, =Lwith h, =x; — X, ; for i=1, 2,....n.
Let Ly denote the set of all algebraic polynomials of degree not greater than K and s; is the restrictions of s on
[lei v X ]the class S (4,2, P) of deficient quartic spline of deficiency 2 is defined by

S(4,2,P)={s:5eC[0,1], 5, €L, fori=12,...,n}

where in S* (4,2, P) denotes the class of all deficient quartic spline S (4,2, P) which satisfies the boundary
conditions.

s(X)=f(X).s(x)=Ff(x) L @.1)
We introduced following problem.
2.1 PROBLEM

Suppose f ' exist over p, there under what restriction on hi there exist a unique spline interpolation

seS* (4, 2, P) , of f which satisfies the interpolating condition.

s() = f(B) (2.2),
(o) = f'(a) i=12...n 82’3
s'(zi) = t'(n) '

1 1 2
Wh =X+ =h =X +=h,y, =X +=h,
ere al 1 3 1 ﬂl 1 2 1 7/ 3

In order to investigate Problem 2.1 we consider a quartic Polynomial g(z) on [0, 1] given by

q(z)=q@]a(z)+q'@jpz(z)+q'(2/3)%(7)+q(0)P4(z)+q(1)P5(z) 5
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Where

Pl(z)=;[64—2082 +2882° —1447%
A 2 3

Pz(z):7[—24+99z—1292 +547°]
Z 2 3

P3(z)=7[3—362+872 —547°]

P,(2)=|1-

168z 4192° 1862° 722"
7 7 7

z
Ps(z)=7[— 4+ 417 -1022% +727%]
We are now set to answer problem (2.1) in following theorem.
THEOREM 2.1 :

If h,_, > h;there exists unique deficient quartic spline S in S*(4,2,P) which satisfies the
interpolatory conditions (2.2) - (2.4) and boundary condition (2.1).

2.2 PROOF OF THE THEOREM

X=X _.
Let t:h—l",OStélthen in view of condition (2.1) - (2.4).

i
We now express (2.5) in terms of restriction s; of s to [X, ;, X; ] as follows :-

Si)=F(B)RMO)+h ' () RO+ T (1) Py(t) +s(x. ;) P () +s(%) B (t) (26)

which clearly satisfies (2.1) - (2.4) and si(X) is a quartic in [lei , Xi] fori=1....n

Since S is first time continuously differentiable on [0, 1]. Therefore applying continuity condition of first
derivative, we get

-176 s, ,h, +(60h, +168h. ,)s, +4s,,,h, , =F, say) (2.7)

i+1

Where F; :[64(hi—1 f(B)+hf(BL) —hh_[24f'(a;)+3 ' ()]

1
+hh L [3F°(n)+24 1 ()]
In order to prove theorem 2.1 we shall show that system of equation (2.7) has unique set of solution.
since (172h,_, —116h,)>0 ifh_ >h.
Therefore, the coefficient matrix of the system of equations (2.7) is diagonally dominant and hence invertible,
this complete the proof of theorem 2.1.

11l. ERROR BOUNDS
Following method of Hall and Meyer [2], in this sections, we shall estimate the bounds of error

function e(x)= f (X) —s(X) for the spline interpolant of theorem 2.1 which are best possible. Let s(x) be the
first time continuous differentiable quartic spline function satisfying the conditions of theorem 2.1. Non

considering f €C®[0,1]and writing M; [f, x] for the unique quartic which agree with
f(8), '(e;), T'(%;), (%) and f(X;,,), we see that for Xe[XH, Xi] and we have

le() | =[f () —s()|=[f (x) =M, [f,x]+M;[f,x]-s(x)| (3.1)
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In order to obtain the bounds of e(x), are proceed to get pointwise bounds of the both the terms on the right
hand side of (3.1). The estimate of the first term can be obtained by following a well known theorem of Cauchy
[7]ie

M, [f,x]- f(x)|< '5t

X=X,
Where t=h—1", and U = max

i 0<x<1
i-1

O (x) 3.2)

To get the bounds of |SI x)—-M,[f, X]| , we have from (2.6).
S, () —M; [, x]=[e(x;,) B, (t) +e(x;) R (1)] (33)
Thus |s; (X) =M, [, xX]|<|e(x,_,)| P, (©)] +|e (x| Ps (1)) (3.4)

Let the max|e(x )| exist for i=j
0<i<n

Then (3.4) may be written as

s, 00=M, [, x]<le(x)) I P.@®) [+ RO I} (3.5)
Now [P, (t)|+|Py (0] =1L — 2t{1 )7~ 147t ~36t7| +t|~ 4+ 33t —36t?| }=
k(t) Say (3.6)
=5, (x) = M,[ f ,x]|s\e(xj )Hk(t)| 3.7)

Now we proceed to obtain bound of ‘e(xj )‘

Replacing S(x;)bye(x;)in (2.7),
We have

176h, e, , +(60h, +168h. ,)e, +4e, h_,=F +176h, f, , —(60h, +168h, ,)f.

i+1 i

—4f. . h , =E(f)Saywhere F definein (2.7)
(3.8)

In view of that E(f) is a linear functional which is zero for Polynomial of degree 4 or less, we can apply Peano
theorem [7] to obtain

E(f)= j“f O) Ef(x—y)¢Jay (39
Thus from (3.9) we have

E(H<F [ IEx- )iy (310)
Further it can be observed from (3.9) that for X, ; <Y <X;

E[(x—Y);

i+1
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=64[h, (B - V)i +h (B —Y)! —hh ,[96(e;, —Y).” +12(c; - y),"]
+hh,[12(y; - y),” +48(,, - ¥),’]— (60N, +168h, ,) (X, - y)*

—4h (X, —Y)* (3.11)
Rewriting the above expression in the following symmetric form about X, we get
=—4h_[x +h -y]*

Vi SY<SX

i+l
4 3 9,4
:>_4hi—1|:(xi_y) +h (X —Y) _éhi:|

Bi<y<y;
=4h,_, [15(x; — Y)4 +26h; (x; — y)3

+24(x; — Y)Z hi2 +8(% —Y) hi3 +§hi4]

a; <y<p;

=4h_ [15(x. — y)* +7h (x, = ¥)°]

X; <Y<¢q;

=—4h [15(x, — y)* = 7h_ (x, — y)®

Yia<Y<X

= —4h[15(x; — y)* —26h,, (%, — y)* +24(x, — y)°h?,

_8(Xi - y) hi?’—l +§hi41]

Ba<y<ria

= aR[(x -Y)* iy (x ~ ¥) - 2h]

i <Y<pPiy

=4h[(x, —y-h_]*

X, <y<a, (312)

Thus it is clear from above expression that E (X — y)*] is non-negative for

Xi—l < yS Xi+l

Therefore it follows that
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18 1887 ph he, v (3.13)

Jo

18.87h hi_l[h(‘_l +h]

E(f) < 3.14
=|E(f)| &) (3.14)
Thus from (3.8) and (3.14), it follow that -

4 4
o) 1887 nh[he, +he] . 015)
S (172h,_, —116h,)
Now using (3.2), (3.7) along with (3.15) in (3.1), we have
18.87h°
tl-t)1-2t)(1-3t)(2-3t k(t)F 3.16
e0l< 155 ,)[( -2 Q-3 2-30JF + 7 k) (316)
h5
:>|e(x)|s§ Fc(t) (3.17)

t1-1)[1-3t]| 2-3t|
18

Where c(t) =|1— 2t|[

18 il {(1 t) (7 — 147t —36t%) +t(~4+ 33t —36t°) ]

=k*(t) (say)
Thus we prove the following theorem.

3.1 THEOREM : Let s(x) be the quartic spline interpolation of theorem 2.1 interpolating

a given functionand f eC® [0,1] then

5
<k O max | 1°() @18)
Also, we have
h®
le(x,) |<K, =1 [)nax_l‘ £2(x) (3.19)
Where Kl=ﬁ
56

Further more, it can be seen easily that k* (t) in (3.18 ) can not be improved for an equally spaced
partition. In equality (3.19) is also best possible. Also equation (3.16) proves (3.18) whereas (3.19) is direct
consequence of (3.15).

Now, we turn to see that inequality (3.19) is best possible in limit case.

5
X
Considering f (X):E and using Cauchy formula [7], we have

Ma{g, }—h—i’:h—s(l t)t(t——)('[——)(t——) (3.20)
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Moreover, for the function under consideration (3.8) the following relations holds for equally spaced knots.

5
(X—) _18. ?7 ——176e, , +228¢, +4e, (3.21)

Consider for a moment

18.87h°
ei—l :ei :W:eh’i (322)

we have from (3.5).

S()—M [ f,x] (323)
I @+

z%ga 2t) (7 —158t +144t?)

S(0)— f (x )—%h—j{a 2t)(7 — 158t + 144t )}+—t(1 t)(t—%)(t——)(t——)}
h5[(@)(1 2)(7 — 158t +144t%) +t(1— t)(t——)(t——)(t—l)] (3.24)

from (3.24), it is clear that (3.16) is best possible. Provided we could prove that

o, —e =g, 108 I 325
R R R (5) (3:25)

In fact (3.25) is attained only in the limit. The difficulty will appear in case of boundary condition i.e.
e(X,)=e(X,) =0. However it can be shown that as we move many subinterval away from the boundaries.

18.87 h5

e(X) >———
)>==

For that we shall apply (3.21) inductively to move away from the end conditions e(X,)=e(X,)=0.

The first step in this direction is to establish that €(X;)>0for some i, 1=1, 2,...n which can be shown by
contradictory result. Let e(x;) < 0 for some i=1,2,....n-1.

Now we rewrite equation (3.8)

h5

—-176e, , +228¢; +4e,,, =18. 87? (3.26)
5
185.27 h?>max|e(x )| { 176e, , +228e, +4e,,,} Since RH.S is negative
5
> l8.87h—
5l
—1>56 (3.27)

This is a contradiction.
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Hence e(x;)=0, fori=12,...,n-1

Now from (3.26), we can write

5

2288, :18.87%+176ei1 —de,,

18.87 h®
=6 <————
228 5

Again using (3.27) in (3.21), we get

228e, <2087 ps {1+ 172}

5! 228
Repeated use of (3.21), we get

2

eisﬂh5 l+£+(E F v (3.28)

228(51) 228 \ 228

. . . . 1887 5
Now it can easily see that the right hand side of (3.28) tending to ———h

56(5!)
18.87 h®

e(x )< — 3.29
(%) 56 5l (329)

which verifies the proof of (3.19).

5 5
) ] X . 18.87 h’ .
Thus, corresponding to the function f(X):§, (3.28) and (3.29) imply e(X;)— w5 & in the limit for

equally spaced knots this completes the proof of theorem 3.1.
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