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ABSTRACT 

Volatility modeling and forecasting is a very important financial Time series research that has both theoretical 

and practical importance to the government, investors, academia, and private practitioners (modelers and 

forecasters), but it has received little attention. As a result, the current study serves as a link that bridges the 

existing gap in long-term memory stock in exchange rate volatility modeling and forecasting. The ARFIMA-

GARCH model is used to analyze monthly exchange rate data for the Federal Republic of Nigeria and the 

Republic of Botswana from 2000 to 2019. According to the literature, the GARCH model is inadequate for 

modeling and forecasting financial and economic time series data. The study reveals that the exchange rates in 

Nigeria and Botswana are heteroscedastic and fractionally integrated processes. The results also revealed 

evidence of persistence, mean reverting tendency, and asymmetric effects in nature. The obtained results are 

invaluable policy documents for the two countries under study and to the well-being of the two countries' 

economies; it is also an invaluable policy document required by private practitioners, academia, and 

policymakers. It should be noted that linear models will be totally inadequate for resolving issues involving long 

memory. 

Keywords: Exchange rate, GARCH, ARFIMA-GARCH, long memory, ADF and KPSS 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 24-11-2022                                                                           Date of Acceptance: 07-12-2022 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 

The theory of econometrics and time series has not yet yielded the most effective method for 

forecasting exchange rates, despite the expenditure of effort and money. Cassel from 1923, Samuelson from 

1964, Mundell from 1968, Allen and Kenen from 1980, Frankel and Mussa from 1985, MacDonald from 1999, 

Rogoff from 1999, Alba and Papell from 2007, Kim B.H. et al from 2009, Taylor from 2009, and Grossmann et 

al from 2010. (2009). Messe None of the forecast models can provide predictions for periods longer than a year, 

according to Rogoff (1983). In their studies of the likelihood of exchange rates, Alvarez and Alvarez-Diaz 

(2003, 2005, and 2007), Alvarez-Diaz (2008), Reitz and Taylor (2008), Anastakis and Mort (2009), Majhi et al. 

(2009), Bereau et al. (2010), and Bildirici et al. (2010) found conditional heteroskedasticity, leptokurtosis, and 

volatility convergence.The qualities mentioned here indicate a departure from normalcy. Akintunde et al. (2013) 

demonstrated the inadequacy of GARCH models for predicting exchange rates and proposed a hybrid of 

GARCH with Bilinear, GARCH with STAR models, and GARCH with ST models. With Ghana and South 

Africa as case studies, Alexander B. et al. (2017) used the ARFIMA approach to innovate GARCH and GJR-

GARCH. The results of this study supported the presence of a mean return and the asymmetrical effects of 

economic shocks on the conditional means of the CPI inflation rates in the two nations under consideration. 

Cheung (2003) investigated the long-term memory of currency rates. Fung, Lai and Lo (2005), Peters (2006), 

Fisher et al. (2007), Barkoulas and Baum (2007c), and Chou and Shih (2007).Anderson et al. (2007) found long-

memory in dollar/Deutschmark exchange rates using a GARCH model. For fractional differencing parameters, 

Barkoulas and Baum (2007a, 2007b) used spectral regression estimates and found that euro-currency returns had 

a long memory. Extended memory series feature continuous reliance across time-separated observations or 

nonperiodic long cycles. If exchange rates had a long memory, investors could anticipate price changes and, on 

average, make a profit. In nations with productive, well-managed pegs, random-walk dollar exchange rates 

should be applied. This happens as a result of daily mediation by central banks in the foreign exchange market 

to effectively support the peg, and as a result of their relatively small and steady trading volume. It is impossible 

to explain the idea of long memory without bringing up the autoregressive fractionally integrated moving 

average (ARFIMA) model. Long memory and ARFIMA will be introduced simultaneously, but because 

estimating ARFIMA models is challenging, it is always advisable to test for the presence of long memory 

first.2.0 MATHEMATICAL SPECIFICATION 
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2.1 LONG MEMORY AND VOLATILITY 

A stationary process  t t T
X


is said to be a long memory process if there exists a real number  0,1   and a 

constant 0fc   such that  

    , 0 1ff w c w w


:  

 .f  is a spectral density function.  A class of process with the above property is called ARFIMA process, this 

process was initiated by Hosking JRM (1981). Mills (2007) generates 
t
 autocorrelation recursively as 
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2.2 ARFIMA MODEL 

In general, 
t

X may be linked by zero mean ARMA process,    t t
B X B   where t is a white 

noise with variance, 
2 ,   1

1 ... ,p

p
B B B        11 ... p

pB B B      are the 

polynomials in B  and  1,...,i i p   and  1,...,i i q    are the parameters of the autoregressive and 

moving average parameters respectively.  Long memory can be found in the class of ARFIMA processes.  

A time series 
t

X  =  1,..., tX X  follows an ARFIMA  , ,p d q  process if: 

      1
d

t tB B X B    ,       (2) 

Where t ~ iid  20, , B is the backward shift operator,   1 1 _..._1 ,p
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invertible if the roots of   B   and  B  are outside the unit root circle and 0.5d   |. when 0d  , an 

ARFIMA process reduces to an ARMA process. Hosking (1981) showed that the auto-correlation,    , of an 

ARFIMA process satisfies  k 
2 1  kdk as  . Sowell (1992) gives an algorithm for the computation 

of ACF of an ARFIMA process as, 
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When 0d  , the auto-correlations have a finite sum; that is, ARFIMA processes with d  0,.5   

Where ,
q

i s s i
s i

  




     1 ;

1

1
p

j j m
m j

p

k j
k

    



 
 

  
 
 

  and 

 
  

   

    

2

2 2

1 2
, ,

1 1

,1;1 ; ,1;1 ; 1

h

h

p p

d d
A d h p

d d

F d h d h F d h d h p  

 

    

         

 



Modelling And Forecasting Exchange Rates Volatility Using Arfima-Garch Model 

12 

The function  .F  is the hyper-geometric function such that 
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Where ,  and nl m are parameters of hyper-geometric function. 

 

2.3 ARFIMA-GARCH MODEL 

A stochastic process  t t Z
X


is an    , , ,ARFIMA p d q GARCH r s  , , , 0  p q r s Nu and d R   
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parameter d  dictates the long terms behavior of the series. Where ,p q  and the coefficient in 

      B and B   permits the modeling of short-range properties. Equation 6 elucidates the volatility 

process in a series such that the process emanating refers to its own lagged values and its squared residuals of 

the mean equation 
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d when ARFIMA GARCH  exhibits stationarity and invertible and 

1
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2
d  when ARFIMA GARCH has a long memory and when the process is none stationarity and 

mean inverting it is  

 

2.4 TEST FOR LONG MEMORY 

2.4.1 RESCALED STATISTIC 

This test was originated by Hurvich (1951) and was later modified by Mandelbrot and his co-authors. It refers to 

the range of partial sums of deviations from its mean, rescaled by its standard deviation. The rescaled statistic is 

defined as: 
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Where denotes weak convergence and V is the range of a Brownian bridge in the unit interval.  Lo (1991) 

pointed out that the R/S statistic is not potent to short range dependence. To permit for short range dependence 

in ty , Lo (1991) modified the R/S statistic as follows: 
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2.4.2 GEWEKE AND PORTER-HUDAK (GPH) 

Geweke and Porter-Hudak (1983) advanced a sturdier semi-nonparametric strategy to test for long memory. 

They opined that when the focus is on frequencies near 0, the parameter d  can be estimated from the least 

squares regression 
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The sign of long memory is copious if the least squares estimate of   ˆ
GPHd d is convincingly larger than 0. 

 

2.4.3 LOCAL WHITTLE ESTIMATION 

It is a semi-nonparametric procedure developed by Robinson (1995). It definition was related to parameter d

and G as shown below 
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3 DATA ANALYSIS AND INTERPRETATION OF RESULTS 

Unit Root Test (level) 

Augmented-Dickey Fuller test was used as a test of unit root at 5% and 10% for both the level and first 

difference. At level the series was chaotic, volatile and unstable, but the series was stable at first difference. The 

long memory property of the series was asserted. 

   

Table 1: Unit Root Test (level) 
Series ADF-Test statistic Critical value  

5%                 10% 
Mackinnon prob  

Naira 0.433965 -2.5702       -2.8678       0.9842 

Pula 0.2013 -2.5702        -2.8678 0.9725 

 Source: extracts from E-view12 outputs 

 

  Table 2: Unit Root Test (First difference) 

Series ADF-Test statistic Critical value 
5%                 10% 

Mackinnon prob  

Naira -20.013751 -2.5702      -2.8678 0.0000 
Pula -21.6683 -2.5702      -2.8678 0.0000 

 Source: extracts from E-view12 outputs 

 

PRE-ESTIMATION TEST FOR ARCH EFFECT IN THE NIGERIAN AND BOTSWANA EXCHANGE 

RATE DATA. 

TABLE 3: HETEROSKEADSTICITY TEST: ARCH EFFECT 

__________________________________________________________________ 

        Probability      P-value  

    Nigeria      Botswana  Nigeria      Botswana  

F-Statistic  17.3218      10.2310                 1.2111      1.0231       0.0000 

Observed R-squared    14.2312      8.9991                  1.1111       1.0027      0.0000 

__________________________________________________________________ 

Source: extracts from E-view12 outputs 

 

Table 3 above reveals the results of the test for ARCH effect of the series under study. The F-Statistic 

value obtained lead to the non-acceptance of the null hypothesis for lack of ARCH effect and the acceptance of 

the alternative hypothesis for its presence in the series. It should be emphasized that the use of ARFIMA-

GARCH is only possible if and only if there exist conditional heteroskedasticity in the series under study 

otherwise it reduces to ARFIMA model. From table 3 above there exist conditional heteroskedasticity because 

of the acceptance of alternative hypothesis and as a result we can estimate ARFIMA-GARCH model for the 

study. 

 

TABLE 4: ARFIMA (3,1,1)-GARCH (1,1) RESULTS FOR NAIRA 

Variable
 

 Estimated coefficient
 

tan  s dard error
 

t test  p value
 

d  
0.2626 1.6249 2.2226 0.0024 

w  0.6883 0.3847 1.2600 0.2124 

  0.3412 0.3691 0.7182 0.3826 

  0.0763 0.3035 0.2113 0.4718 

 Source: extracts from E-view12 outputs 

 

TABLE 5: ARFIMA (3,1,1)-GARCH (1,1) RESULTS FOR PULA 

Variable
 

 Estimated coefficient
 

tan  s dard error
 

t test  p value
 

d  
0.2728 0.3411 1.2151 0.0021 

w  0.4132 0.2899 0.0821 0.3086 

  0.2276 0.2391 0.2491 0.2142 

  0.3121 0.7821 0.6211 0.2613 

 Source: extracts from E-view12 outputs 
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Tables 4 and 5 show the results of ARFIMA-GARCH estimates for exchange rates of Nigeria (Naira) and 

Botswana (Pula) as extracted from the analysis. d  value (fractional integrated parameter) obtained is 

significant, indicating that the exchange rates is independent and identically distributed process. d value is also 

very close to zero indicating the volatility of the series under study which confirms the results obtained for 

Augmented Dickey Fuller test for long memory and for unit root test. 

 

LONG MEMORY PARAMETERSESTIMATE OF NIGERIAN NAIRA AND BOTSWANA PULA. 

TABLE 6: LONG MEMORY PARAMETERS ESTIMATE 

______________________________________________________________________________ 

Test     Nigeria exchange rate                      Botswana exchange rate 

Fractional integration parameter        

Local Whittle estimator (LWE)  0.28  0.000


     0.56  0.000


 

Geweke and Potter Hudak (GWH)  0.36  0.000


  0.52  0.000


 

Rescaled Statistic (RS)   0.51  0.000


                      0.64  0.000


 

 Source: extracts from E-view12 outputs 

It should be noted that in the two cases the null hypothesis of no long memory is not accepted at 5% significance 

level. 

 

4.0 SUMMARY OF MAJOR FINDINGS AND CONCLUSION 

Augmented-Dickey Fuller testwas used to test for the presence of unit root test at 5% and 10% for the 

level and first difference. At level the series was chaotic, volatile and unstable, but the series was stable at first 

difference. above reveals the results of the test for ARCH effect of the series under study. The heteroscedsticity 

test conducted reveals that F-Statistic value obtained lead to the non-acceptance of the null hypothesis for lack 

of ARCH effect and the acceptance of the alternative hypothesis for its presence in the series. there exist 

conditional heteroskedasticity because of the acceptance of alternative hypothesis and as a result ARFIMA-

GARCH model for the study was estimated. The results of ARFIMA-GARCH estimates for exchange rates of 

Nigeria (Naira) and Botswana (Pula) as extracted from the analysis. d  value obtained is significant, indicating 

that the exchange rates is independent and identically distributed process. d value is also very close to zero 

indicating the volatility of the series under study which confirms the results obtained for Augmented Dickey 

Fuller test for long memory and for unit root test. 

In conclusion the existence of long-memory in exchange rates shows significant relationships between 

observations. Applying advanced statistical models like ARFIMA-GARCH model for forecasting will not only 

serve the interest of forecasters, academia and investors, but also assist financial timeseries cum 

econometricians to be able to assess the empirical behavior of financial data. Performance in the foreign 

exchange markets. The ARFIMA-GARCH process remains the choice as it is flexible in modeling the short- and 

long-term forecast properties of the exchange rates.  
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